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Abstract
Divisive normalization (DN) has been suggested as a
canonical computation implemented throughout the neo-
cortex. In primary visual cortex (V1), DN was found to
be crucial to explain nonlinear response properties of
neurons when presented with superpositions of simple
stimuli such as gratings. Based on such studies, it is
currently assumed that neuronal responses to stimuli re-
stricted to the neuron’s classical receptive field (RF) are
normalized by a non-specific pool of nearby neurons with
similar RF locations. However, it is currently unknown
how DN operates in V1 when processing natural inputs.
Here, we investigated DN in monkey V1 under stimulation
with natural images with an end-to-end trainable model
that learns the pool of normalizing neurons and the mag-
nitude of their contribution directly from the data. Tak-
ing advantage of our model’s direct interpretable view
of V1 computation, we found that oriented features were
normalized preferentially by features with similar orienta-
tion preference rather than non-specifically. Our model’s
accuracy was competitive with state-of-the-art black-box
models, suggesting that rectification, DN, and a com-
bination of subunits resulting from DN are sufficient to
account for V1 responses to localized stimuli. Thus,
our work significantly advances our understanding of V1
function.
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malization

Introduction
A crucial step towards understanding the visual system of the
brain is to build models that predict neural responses to arbi-
trary stimuli with high accuracy (Carandini et al., 2005). The
current state-of-the-art data-driven model in accurately pre-
dicting single-unit monkey V1 responses to natural stimuli is
a three-layer black-box convolutional neural network (CNN)
(Cadena et al., 2019). However, such multi-layer CNNs are
difficult to interpret. For instance, we do not know what kind of
nonlinear mapping the CNN approximates. A good candidate
for such a nonlinearity is divisive normalization (Heeger, 1992)
which was proposed to be a canonical neural computation
throughout the visual pathway because it explains a wide va-
riety of neurophysiological phenomena (Carandini & Heeger,
2012).

The basic idea of DN (Figure 1a) is that a unit’s response

zl =
yl

σl +∑k pkl · yk
(1)

is given as its driving input activity yl divisively normalized by
a weighted sum over nearby units’ driving inputs yk (Carandini
& Heeger, 2012; Heeger, 1992). In V1, the driving input is typ-
ically given as the half-wave rectified result of a linear filter ap-
plied to the stimulus. In the denominator, the semi-saturation
constant σl defines how responses saturate with increasing
driving input. The set of normalizing neurons k, as well as
the according normalization weights pkl , define which nearby
neurons contribute, and with what strength, to the normaliza-
tion of a given neuron l. While both are unknown, in this study
we focus on neurons with the same RF location and localized
stimuli covering the RF. In this setting, nonlinear effects such
as cross-orientation inhibition have been described (Bonds,
1989; Busse, Wade, & Carandini, 2009; DeAngelis, Robson,
Ohzawa, & Freeman, 1992; Heeger, 1992; Morrone, Burr, &
Maffei, 1982).

To explain such localized normalization phenomena, it is
currently assumed that the normalization weights for a given
output unit are constant, pkl = pl (Busse et al., 2009; Heeger,
1992). This leads to an orientation-nonspecific normalization
uniformly pooling over all nearby neurons with similar RF loca-
tion (Bonds, 1989; Busse et al., 2009; DeAngelis et al., 1992;
Heeger, 1992; Morrone et al., 1982). However, those studies
experimentally investigated the effect of DN while presenting
simple stimuli such as gratings. It is not clear if these results
generalize to responses to natural images, therefore limiting
our understanding of visual processing in V1 (Carandini et al.,
2005; Olshausen & Field, 2005).

It is currently unknown if DN is used in processing natural
stimuli in V1 and if so, which types of neurons contribute to the
normalization of a given unit and with what strength they do
so. To answer this question, we propose an end-to-end train-
able DN model to predict V1 spike counts from natural stimuli,
learning all parameters directly from the data. By analyzing
the learned normalization weights pkl , we gain insights into
how nearby neurons contribute to any given neuron’s normal-
ization pool.

Results
We investigate a dataset of 166 neurons recorded using
multi-channel silicon probes in V1 of awake fixating monkeys,
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Figure 1: Model architecture. (a) Divisive normalization (DN)
mechanism, model’s core part (simplified). Visual input is
passed through multiple linear filters. The normalized re-
sponse is computed by dividing the driving input of one fil-
ter through a weighted sum of the driving inputs of all filters
with normalization weights pkl and the semi-saturation con-
stant σl . (b) Data and model architecture. Our model predicts
the spike counts for each of 166 neurons in a time window
40–100 ms after stimulus onset. The model is split into a core
part, including 32 DN mechanisms (a), and a readout part (c).
(c) Linear readout mapping the shared feature space to each
neuron’s spike count through an individual weighted sum over
the entire feature space. Readout weights are factorized in
feature weightings and a receptive field (RF) location mask.

who viewed a fast sequence of natural images and textures
(Cadena et al., 2019). Images covered 2◦ of visual angle and
were flashed for 60 ms without blanks in between (Figure 2).
In this work, our goal is to predict the spike counts extracted
in a time window of 40–100 ms after image onset (Figure 1b),
accounting for typical response latencies in V1.

Learnable Divisive Normalization Model

We fit our DN model to all recorded neurons simultaneously
(Figure 1). Fitting it to each neuron individually would be in-
tractable because all normalizing subunits would have to be
implicitly learned for each neuron separately, for which there is
not enough data from individual neurons. Instead, when fitting
the model to all neurons simultaneously, all neural responses
are already provided which can be used by the normalization.
In addition, it is sufficient to learn 32 features (indexed by l in

Time
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2 deg

Figure 2: Natural stimuli covering two degrees visual angle,
shown in fast sequence. Images were centered on RFs of
recorded neurons. Adapted from Cadena et al. (2019).

Table 1: Accuracy (fraction of explainable variance explained,
FEV) of different models. * Fitted to each neuron individually.

Model FEV (%)
Linear-nonlinear Poisson (Cadena et al., 2019) 16.3*
Energy model 45.9
Nonspecific divisive normalization 47.8
Divisive normalization (ours) 48.5
Black-box 3-layer CNN (Cadena et al., 2019) 49.8

Equation 1) shared by all neurons, since many neurons in V1
perform similar computations. We achive both by leveraging
the idea by Klindt, Ecker, Euler, and Bethge (2017) to split the
model into two parts (Figure 1b).

In the first core part (Figure 1a), we learn our DN model.
To match a more general formulation of DN (Carandini
& Heeger, 2012), we compute the driving inputs yl =
[max(0,BN(wl ∗ x))]nl by convolution with 32 kernels wl of
spatial size 13px× 13px. Stimuli x were downsampled by
factor of two and cropped, keeping the central 46px× 46px
(≈ 1.3◦ visual field). Batch normalization without rescaling
(BN) (Ioffe & Szegedy, 2015) leads to responses of unit vari-
ance and in the denominator of Equation 1 we use low-pass
filtered inputs, yk ← 〈yk〉 (average pooling over 5px× 5px).
When fitting our model, all parameters are learned, leading to
a nonlinear feature-space shared by all neurons.

In the second readout part (Figure 1c), we map the learned
feature maps zl to the activity of individual neurons via a linear
readout for each neuron, similar to previous work (Cadena
et al., 2019; Klindt et al., 2017). To ensure that the readout
does not model any complex computations nor contribute to
normalization, we constrain the weights to be non-negative
and factorize them into a location mask encoding a neuron’s
RF times a vector of feature weights. Additionally, we impose
an L1 sparseness prior.

Accuracy of DN Model is Competitive
Our DN model achieves an accuracy competitive to the data-
driven state-of-the-art model of Cadena et al. (2019). We de-
fine the models’ accuracies (Table 1) as fraction of explainable
variance explained (FEV), which is the fraction of the stimulus-
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Figure 3: Normalization weights (white and blue squares) for
features ordered by orientation. Last two features (bottom and
right) show no orientation. Weights in diagonal directions (ar-
rows) correspond to approximately constant orientation differ-
ence between features l being normalized and features k that
can contribute to normalization. Diagonal lines mark 45◦ ori-
entation difference boundary. Weights for similar orientation
(< 45◦) are higher (darker color) compared to dissimilar ori-
entation (≥ 45◦). Model with highest accuracy.

driven response that is explained by the model, ignoring unex-
plainable trial-to-trial variability in the response of the neurons.
Thus, a perfect model would reach 100% FEV. Our DN model
achieved an accuracy of 48.5% FEV, performing almost as
well as the state-of-the-art black-box CNN, which reached a
FEV of 49.8% (Cadena et al., 2019).

Removing the trainable DN module (Equation 1) from our
full model, just keeping 32 channels of linear-nonlinear drives
yl directly followed by the readout, leads to an model that is
able to approximate complex cells. Therefore, we refer to it
as energy model (Adelson & Bergen, 1985), which reaches
an accuracy of 45.9% FEV. The drop of 2.6 percentage points
compared to our full model supports the hypothesis that DN is
an important computational mechanism in V1 under stimula-
tion with natural images. The linear-nonlinear Poisson model
(Simoncelli, Paninski, Pillow, & Schwartz, 2004) is another
classical standard model of V1. It was fit to each neuron in
our dataset individually, reaching an even lower accuracy of
16.3% FEV (Cadena et al., 2019).

Normalization is Feature-Specific

We now investigate the structure of the learned normaliza-
tion pool, i. e. the weights pkl of the sum in the denomina-
tor of Equation 1: The higher the weight, the stronger feature
l is normalized by feature k. For this analysis, we focus on
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Figure 4: Sum of normalization weights averaged over models
with FEV > 48.0% (38 models). For similarly oriented features
(< 45◦) sum is 30.3% higher than for features with dissimilar
orientation (≥ 45◦). Error bars show standard error across
models. Difference is statistically significant (Wilcoxon signed
rank test; p < 1.1 ·10−7, N = 38).

orientation-selective features. We find that weights are higher
if the feature to be normalized and the normalizing feature ex-
hibit similar orientation (Figure 3). In contrast, strongly differ-
ing orientations lead to lower weights.

To quantify this difference in contribution to normalization,
we split the sum in Equation 1 into two parts: The contribution
of features k with orientation similar to the driving feature l and
that of features with dissimilar orientations. For each weight,
we calculate the angle difference for its driving and normaliz-
ing feature by detecting the global maximum in the features’
power spectrum. We assign the weights into a class of sim-
ilar orientations (orientation difference < 45◦) and dissimilar
orientation (orientation difference ≥ 45◦). Subsequently, we
sum up the weights in each of the two classes separately. We
repeat this procedure for all models with an FEV greater than
48.0% (38 models) and average the sum of weights for similar
and dissimilar oriented features across models. This analy-
sis confirms our observation from above: The sum of weights
accounting for normalization by similar orientations is 30.3%
higher than the sum of weights accounting for dissimilar orien-
tation (Figure 4). This result is statistically significant across
models (Wilcoxon signed rank test; p < 1.1 · 10−7, N = 38).
Hence, similarly oriented features contribute more strongly
to the normalization of oriented features than dissimilarly ori-
ented ones.

In a control experiment we fit a feature non-specific normal-
ization model with constant normalization weights pkl = pl .
This model’s accuracy is 47.8% FEV, which is below that of
our more general DN model in our main experiment, suggest-
ing that indeed feature-specific normalization is necessary to
account for V1 responses.

3



Discussion

Previous experimental work investigated suppressive phe-
nomena within the RF only with simple stimuli, mainly con-
sisting of a combination of driving and mask gratings. Some
of them encountered weak orientation-specific phenomena
in few cells, but all concluded that normalization is predom-
inantly orientation-nonspecific (Bonds, 1989; Busse et al.,
2009; DeAngelis et al., 1992; Heeger, 1992; Morrone et al.,
1982). Thus, our findings do not stand entirely in contrast
to previous experimental results, but we quantitatively refine
them using a larger dataset of V1 responses to natural im-
ages: We find that oriented features are preferentially normal-
ized by channels with similar orientation. The reason for the
difference between our results and previous studies could be
that we use natural stimuli, which have different image statis-
tics compared to simple stimuli. Furthermore, most previous
studies of DN were performed in cats, however, orientation-
specific DN could be more specific to primate rather than cat
visual cortex.

Our discovery of DN by similar orientations matches the im-
plementation of the connectivity of neurons in mouse V1: In-
hibitory parvalbumin-expressing interneurons strongly inhibit
those excitatory pyramidal cells that share their visual selec-
tivity (Znamenskiy et al., 2018). Furthermore, our empirical
findings are consistent with a normative model: From the effi-
cient coding hypothesis, Schwartz and Simoncelli (2001) de-
rived an ecologically justified DN model which implies that nor-
malization weights should not be uniform.

In conclusion, we developed a model consisting of one layer
of subunits followed by a learned orientation-specific DN. We
have no evidence that any additional computation might be
missing to account for responses to localized natural stimuli in
V1, given that this model performs with an accuracy compet-
itive with state-of-the-art black-box models. Hence, our work
significantly improves our understanding of V1 function and
DN under conditions close to real-world visual stimulation.
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