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Abstract
Object recognition has been extensively explored in the
computer vision literature, and over the last few years the
results in this field have sometimes even surpassed hu-
man performance. One of the main reasons for this suc-
cess is the growing number of images available to gener-
ate training datasets for machine learning. In comparison
to computer vision, haptic approaches to object recog-
nition have received relatively little attention, probably
due to the inadequacy of available sensors to gather the
huge amount of data needed to train the modern machine
learning algorithms. Consequently, the performance of
machine haptic recognition of objects is still far from
being comparable with humans. In this paper, we first
present a new sensor system capable of capturing part
of the information that humans produce during the hap-
tic manipulation of objects and an artificial haptic intelli-
gence that classifies shapes from the dataset created by
the sensor system. Secondly, we compare the haptic ob-
ject recognition performance between humans and a ma-
chine. The current study sheds new light upon the novel
approach used to capture human haptic exploration and
provides evidence that artificial haptic intelligence out-
performs human haptic recognition abilities.
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Introduction
Robotic systems need to have capabilities similar to the hu-
man haptic system in order to perform complex grasping,
manipulation, and object recognition tasks using dexterous
hands. Currently, according to the type of data acquisition, the
methods of haptic object recognition can be divided into two
categories: based on the distributions of contact points (Allen
& Roberts, 1989; Meier, Schopfer, Haschke, & Ritter, 2011;
Navarro et al., 2012); and based on the pressure patterns in
tactile arrays (Lin, Calandra, & Levine, 2019; Luo, Mou, Al-
thoefer, & Liu, 2019). None of them gets accuracies or reac-
tion times similar to humans. In fact, they do not even try to
compare their algorithms results with humans.

On the other hand, in humans, tactile sense is the earliest
developing sensory organ enabling an infant to actively ex-
plore the world. Previous investigations have demonstrated
that humans are surprisingly good at judging shape of the
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object using the haptic modality (Klatzky, Lederman, & Met-
zger, 1985). Our abilities to use the sense of touch for iden-
tifying and categorising the shapes are well supported by ex-
tensive structural and functional brain architecture implicated
in haptic processing (Masson, Bulthé, De Beeck, & Wallraven,
2016; Masson, Kang, Petit, & Wallraven, 2018). In the cur-
rent study, we present a novel method used to capture haptic
shape exploration of humans with which an artificial agent can
be trained. Afterwards, we compare the haptic shape recog-
nition abilities between trained machine and humans.

Materials and Methods
Stimuli
Stimuli used in this experiment were modelled with the 3D
extension of the Superformula (Gielis, 2003), a formula pro-
posed by Johan Gielis in 2003 that is supposed to describe
many complex shapes and curves that are found in nature.
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3D parametric surfaces are obtained by multiplying two Su-
performulas, r1 and r2. To generate a family of smoothly vary-
ing shapes as a set of stimuli, starting from a rounded cube,
we have modified the values of exponent n2 in latitude and
longitude. The 2D images of resulting 9 stimuli are shown in
Figure 1.

Figure 1: Images of 3D printed shapes.

The stimuli were printed out as tangible objects on a 3D
printer (BQ, Witbox2, Spain). In order to capture the human
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haptic object manipulation, we attached twenty-four copper
pads equally distributed to the surface of each object (Fig-
ure 2). Each pad is connected to an electronic board placed
inside each object, acting as a capacitive sensor.

Figure 2: Objects covered with copper pads connected to an
electronic board placed inside. Each face is tagged with a
letter.

Data Acquisition

The electronic board placed inside the object collects data
from all the sensors (touched or not touched) and sends it
to a computer via Bluetooth. The sampling frequency is 40Hz.
For every sample, an array of 24 elements, each one being
1 (not touched) or 0 (touched), is received. Having sensors
numbered from 0 to 23, we can observe, in this example (Fig-
ure 3) , that sensors 2,5,6 and 7 are in the touched state while
the rest remain untouched.

1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3: An example of a sample obtained from 24 sensors
attached to a stimulus.

To train our haptic system, we collected an independent
dataset containing 20 minutes (15 for training and 5 for test-
ing) of human haptic exploration per object. To obtain a com-
plete exploration of the objects and to standardize haptic ex-
ploratory procesure over time, we instructed a participant to
perform a task. The task is to match a letter displayed on the
monitor in front of a participant with a letter on the top surface
of the object for each trial. For this task, objects faces were
tagged with a letter (see Figure 2).

During the task, a participant who sat in a comfortable chair
had to explore the object with both hands looking for the dis-
played letter on the monitor at the object surface (Figure 4).
Once a letter was found, a participant was instructed to push
a button placed under his feet to display a new letter for the
next trial. The same letter never appeared consecutively. Four
series each lasting for five minutes have been recorded per
object, giving a total of 36 (4 series, 9 objects) data logs with
12000 lines each.

Figure 4: Participant exploring an object.

Machine Learning Algorithm
To process the captured tactile signal, a naive Bayes classi-
fier capable of differentiating the 9 stimuli was implemented.
We have split the dataset into two halves: one for training the
classifier and one for testing the accuracy of the machine. The
dataset for training contains three series out of four recorded
per stimulus, while the testing dataset contains one remaining
series per stimulus.

From now on, every sample, a line of a log file containing
an array of 24 binary digits, will be called state. Each state
represents which copper pads of the object were touched in a
moment in time (every 25 ms). From the 224 possible states,
humans, while exploring the geometry of each stimulus, gen-
erate distinctive states over time per stimulus. To prevent the
machine from classifying objects based on how the sensors
are placed, we installed sensors in the same order for all ob-
jects. This was possible because our set of stimuli shares
similar geometry. Thus,if equivalent sensors were frequently
touched in both stimuli, it means that these stimuli share simi-
lar states.

Bayes classifier determines, given a series of states, the
probability of states belonging to a stimulus, i.e., P(y |
x1, . . . ,xn) where xi is a state configuration, n is the number
of consecutive states (n/40 secs) and y is a label identifying
each stimulus. The resulting prediction ŷ is:

ŷ = argmax
y ∈ [1,9]

[
P(y) ·

n

∏
i=1

P(xi | y)

]
(2)

P(xi | y) is the probability of finding a xi state given a stimu-
lus y. We could obtain this probability from our dataset. The
n-product is the naive condition, and P(y) is the probability
of every stimulus, in this case 1/9. Since conditional proba-
bilities for each stimulus, given a state, are very small, when
multiplied together, they result in very small values, which can
lead to floating point underflow. To fix this, we used the log-
arithm of the probabilities instead of the raw probabilities on
its implementation. Moreover, some states that appeared on
testing data could be new to the classifier. In this case, we
added this new state with a probability of 0. However, not hav-
ing a certain state in the training data for a certain stimulus
does not guarantee that the testing data does not belong to
that stimulus. Based on this logic, and to avoid the possibility
of the probability becoming 0, we applied Laplace smoothing.
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Human Haptic Experiment

To determine to which extend humans can classify objects
based only on their haptic experiences, we conducted a hap-
tic experiment. Adults (N=15 (male = 9), the range of age =
20-37 years old) with no prior diagnosis of neurological or per-
ceptual deficits took part in this experiment. The experiment
consists of two sessions. For both sessions, participants were
blindfolded and explored each stimulus with both hands. The
first session is the training session in which participants were
instructed to explore each object for 10 seconds and to give a
label/tag. Importantly, they were informed that the tags were
going to be used to identify each stimulus in the testing ses-
sion. When the training session started, to give a participant
an idea of the range of objects shape used in the experiment,
the first object given to a participant was always the cub10
and the second object given was always the lon20 that was
perceived most differently to cub10 in our previous pilot study.
The rest of the stimuli were presented in random order.

After a brief break, participants performed the haptic object
recognition task during the testing session. The objects were
given one by one in random order. In this session, participants
were instructed to take their time and give a corresponding tag
as correctly as possible. We use both accuracy and reaction
time (i.e., the time taken to identify the object) as indices of
human performance.

Results

Machine Haptic Recognition

To obtain the accuracy of the classifier over time, we split the
testing dataset into multiple files with their sizes being propor-
tional to the time of testing. Then, every subfile was classi-
fied using the presented algorithm. In the end, accuracy was
computed as the number of times the classifier was able to
classify correctly the subfile over the total number of subfiles
tested. The results for each stimulus are shown in Figure 6.

Figure 6: Naive Bayes classifier accuracy per stimulus versus
time (secs).

The results demonstrate that classification accuracy is all
above chance level across 9 stimuli (Figure 6). The perfor-
mance of machine haptic recognition will be compared to hu-
man performance in the following section.

Human Haptic Recognition

When computing the average reaction time per participant,
two participants with outlying reaction time were detected and
removed from the following graphs and further analysis. The
resulting average accuracy and reaction time across objects
per participant are shown in the figures 7 and 8.

Figure 7: Average accuracy per participant.
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Figure 8: Average time per participant.

We observed that all participants were capable of identi-
fying each object above the chance level (i.e., 11.1%). The
group median accuracy is 66% and the reaction time is 8 sec-
onds.

Comparison Between Machine and Human Haptic
Recognition
Our human participants spent an average of 8 seconds to
identify an object. For the machine trained with Bayes
classifier, the performance at 8 seconds is 89.19% (Figure
6), which is higher than 66% (95% confidence interval=44-
77%).Considering that the upper end of the confidence inter-
val value of human accuracy (77%) is smaller than 89%, the
machine seems to perform haptic object recognition task bet-
ter than humans. In terms of accuracy, the machine was able
to achieve the same accuracy (i.e., 66%) as humans in 1.75
seconds (8 seconds for humans; 95% confidence interval=6-
12 seconds).

Conclusions
For the first time, a haptic recognition comparison between
machine and human has been made. The results are clear
and striking: the machine is capable of classifying novel 3D
shapes shapes much better than humans. It is important to
consider that our algorithm uses just a small part of the data
generated during human manipulation of shapes and the sys-
tem does not know any geometrical relationship among sen-
sors attached to different parts of the object. In this study, we
first demonstrate that our novel methods can be used to in-
vestigate haptic recognition in both a machine and a human.
It is worthwhile to mention that the results from human haptic
experiments need to be analysed more profoundly. We have
observed that human recognition performance across shapes
does not follow a normal distribution, which could be due to
two possible reasons. The first reason could be related to
an issue of memory overload because of the high number
of objects that are very similar to each other. Another rea-
son could be due to a difference in the degree of difficulty in
recognition across objects. For instance, a couple of objects
that are familiar to humans, cub10 (cube) and lon00 (cylinder).
They could be considered almost as outliers in terms of accu-
racy and reaction time compared with the other less familiar

shapes (Klatzky et al., 1985). In contrast, the performance of
the proposed system did not show such bias.

Although, the proposed system and humans are able to
classify objects according to their shapes, this does not mean
that they do so under the same parameters or premises. As
mentioned above, our system is trained by using only a small
subset of the data collected during human shape manipula-
tion. Moreover, humans and machines have different learn-
ing processes and decision making. In order to understand
and compare the haptic internal representation of humans and
machines, future study is required.
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