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Abstract: 
In recent years artificial neural networks achieved 
performance close to or better than humans in several 
domains: tasks that were previously human 
prerogatives, such as language processing, have 
witnessed remarkable improvements in state of the art 
models. One advantage of this technological boost is to 
facilitate comparison between different neural networks 
and human performance, in order to deepen our 
understanding of human cognition. Here, we investigate 
which neural network architecture (feed-forward vs. 
recurrent) matches human behavior in artificial 
grammar learning, a crucial aspect of language 
acquisition. Prior experimental studies proved that 
artificial grammars can be learnt by human subjects 
after little exposure and often without explicit 
knowledge of the underlying rules. We tested four 
grammars with different complexity levels both in 
humans and in feedforward and recurrent networks. 
Our results show that both architectures can “learn” 
(via error back-propagation) the grammars after the 
same number of training sequences as humans do, but 
recurrent networks perform closer to humans than 
feedforward ones, irrespective of the grammar 
complexity level. Moreover, similar to visual 
processing, in which feedforward and recurrent 
architectures have been related to unconscious and 
conscious processes, our results suggest that explicit 
learning is best modeled by recurrent architectures, 
whereas feedforward networks better capture the 
dynamics involved in implicit learning.An extended 
version of this work is available as preprint at: 
https://arxiv.org/abs/1902.04861 
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Introduction 

In recent years the field of neural networks has 
undergone a substantial revolution boosted by deep 
learning approaches (Lecun et al., 2015). Different 
architectures have reached human-like performance in 
domains that were previously considered as sole 
prerogative of the human brain, such as perception or 
language. Part of this success originates from insights 
provided by cognitive sciences, in which brain-inspired 
solutions are implemented in functional models 
(Hassabis et al., 2017). Conversely, it is possible to 
investigate the computational processes that take 
place in the human brain by comparing them with 
artificial functional models (Yamins and DiCarlo, 
2016). For this purpose, Artificial Grammar Learning 

represents an ideal venue, given its well-established 
roots in both the cognitive and computer science 
literature. On the one hand, a formal definition of 
grammar complexity (i.e. Chomsky’s hierarchy, 
Chomsky, 1956) provides a theoretical framework to 
study grammar learning; on the other hand, previous 
studies in humans set a well-defined experimental 
framework to compare human behavior with the 
performance of different neural network architectures. 
Previous studies have shown that participants can 
learn artificial grammars equally well irrespective of 
their level in the Chomsky hierarchy. However, it is still 
debated what determines participants’ behavior, and 
different theoretical accounts have been proposed 
(Pothos, 2007): one theory suggested that participants 
learn the grammar rules implicitly; a revised account of 
the same hypothesis suggested that participants do 
not learn the full spectrum of grammatically correct 
transitions, but only a subset of it, such as bigrams or 
trigrams (Reber and Lewis, 1977). A further 
computational perspective posits that humans learn 
sequences as recurrent models, that is, by decoding 
relevant features from former adjacent items in the 
string(Cleeremans et al., 1989). However, contrary to 
human experiments in which subjects typically see a 
few dozen examples, all considered computational 
models have been trained with large datasets, and 
sometimes with significant overlap between training 
and test sets, making it difficult to draw any substantial 
comparisons with human cognition. 

In this study we tested 4 grammars spanning over 3 
Chomsky’s hierarchy levels. Both human participants 
and artificial neural networks were trained and tested 
on datasets generated from those grammars. 
Importantly, we aimed to use comparable amounts of 
training for humans and artificial neural networks. Our 
purpose was to investigate which architecture—feed-
forward vs. recurrent networks—better captures 
human behavior as a function of grammar complexity. 
Moreover, as AGL is an established framework to 
contrast implicit and explicit learning(Dienes and 
Perner, 1999), we aimed at testing whether these 
modes could be related respectively to feedforward 
and recurrent architectures, similarly to findings in 
visual perception (Lamme and Roelfsema, 2000). 
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Materials and Methods 

Artificial grammar dataset 
We performed 4 experiments with different artificial 
grammars (fig.1A), each composed of the same 
amount of correct and incorrect sequences. According 
to the Chomsky hierarchy, two grammars were 
regular, referred in the following as grammar A and 
grammar B, one was context-free and one was 
context-specific. Figure 1A shows in details how 
sequences were generated in each grammar, and 
provide few examples of correct and incorrect 
sequences. 

 
Figure 1. A) A schematic representation of the 4 grammars 

employed in this study, arranged according to the Chomsky 
hierarchy, and few examples of correct and wrong sequences. B) 
Time-course of each trial. All the human experiments employed 
the same design. The sub-table reports the number of blocks for 
each session: implicit, explicit and memory.  

Humans 
Experimental design. The same experimental design 
was applied for each grammar. Each trial started with 
a fixation cross, followed by a string of letters 
displayed in the center of the screen (fig.1B). 
Participants (N=15 for Grammar A, B and CF; n=11 for 
CS) were informed that there were two groups of 
respectively correct and wrong sequences, and they 
were asked to classify each presented sequence. 
Visual feedback was provided at the end of each trial. 
Each participant performed one session lasting 
approximately 1-hour and composed of 10 blocks. 
During the first 8 blocks, labeled as implicit in the sub-
table in figure 1B, participants were not explicitly 

informed about the existence of the rules generating 
the sequences. Each block of the implicit part counted 
60 trials, for 480 trials in total. A questionnaire was 
provided between the 8th and the 9th block to assess 
participants’ explicit knowledge of the rules. The 
questionnaire was different for each grammar, asking 
specific questions about the rules. The last 2 blocks 
(labeled respectively as explicit and memory in figure 
1B) served as control conditions. The results of thelast 
2 blocks and the questionnaire are not shown here 
(see link to the full preprint in the abstract). 

Artificial neural networks 
Experimental design.The neural network design 

was composed of two parts: a first parameter search, 
and a subsequent comparison with human behavior. 
Both were implemented using the Keras library 
(Chollet, 2015), back-ended in Tensorflow 
(GoogleResearch, 2015). Altogether, we trained 
feedforward and recurrent architectures, each 
composed of a series of fully connected layers. All 
networks were trained to classify the sequences as 
correct or wrong, employing the same dataset (i.e. 4 
grammars) and the same amount of trials as in the 
human experiments.  

Regarding the parameter search, we aimed at 
determining the parameters whereby each architecture 
scored closest to human performance. We tested a 
range of networks, varying the number of layers and 
the learning rate, defining a 2-dimensional space. The 
training set was composed of 500 sequences (roughly 
similar to humans, who viewed 480 training examples), 
whereas the validation and testing set were composed 
respectively of 100 and 200 sequences. All the layers 
of a given network counted the same number of 
neurons except the output layer, which had only one 
neuron. The number of neurons was chosen such that 
all networks within the same 2-dimensional space had 
(roughly) the same number of free parameters. Each 
parameters space counted 6x20=120 networks, each 
one trained 20 times with random weights initialization. 
At first, we determined which networks provided the 
closest-to-human performance, defined as the 
smallest difference between the average performance 
of each network and the between-subjects mean 
performance on the last block. We selected the 
network with the smallest absolute difference as the 
one closest to human behavior. Once we determined 
the closest-to-human networks, we obtained their 
respective learning curves by varying the training set 
size progressively from 100 to 500 sequences, with a 
stride of 100.  

Feedforward architectures. Feedforward neural 
networks were composed of fully connected dense 
layers. The input layer counted 12xK neurons, 
representing the one-hot encoding of the 12-letters 
longest possible string (K represents the total number 
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of letters, equal to 4, 5 and 10 for grammar A, B and 
CFG/CSG respectively). We employed zero-right 
padding when shorter sequences were fed to the 
network.  All activation functions were defined as 
rectified linear units, i.e. ‘ReLu’, except the output 
neuron, which was implemented with a sigmoid 
function. The loss function was defined as ‘mean-
square-error’, and optimized by means of stochastic 
gradient descent with Nesterov momentum set to 0.9, 
and decay equals to 1e-06. In all grammars, both in 
the parameter search and in the learning curve 
estimation, we considered 1 epoch, batch size of 15.    

Recurrent architectures. Recurrent neural 
networks were composed of fully recurrent connected 
layers, in which each neuron was connected to itself 
and all other neurons in its layer. Starting from each 
sequence’s first letter, at each time step the following 
letter was provided to the network as a one-hot 
encoded vector. The input layer thus counted as many 
neurons as letters in the grammars alphabet. A 
sigmoid activation function armed the output neuron, 
whose activation determined the classification decision 
after the last letter of the string was fed to the network. 
Learning occurred via back-propagation through time. 
As in the feedforward architecture, we considered 
‘mean-square-error’ as loss function, optimized with 
the keras function rms-prop. We set rho to 0.9, epsilon 
to 1e-8 and decay to 0. As for the feedforward 
networks, we employed only 1 epoch (500 samples) 
and batch size of 15 in both the parameter search and 
the learning dynamic part. 

Results 
As shown in figure 2, at every level of the 

Chomsky’s hierarchy, both participants and neural 
networks learned the rules above chance within the 
limited amount of trials. Regarding the NN, we first 
performed a parameter search in order to identify the 
networks whose performance was closest to the 
human one. Due to space limitation, we do not report 
this analysis here (see the abstract for the link to the 
preprint). However, regarding the feedforward 
networks, we reported that the best results were 
obtained with the lowest number of layers 
(corresponding to the highest number of neurons per 
layer), at each level of the Chomsky’s hierarchy. 
Concerning the recurrent networks, we observed that 
1) the highest accuracies corresponded to the lowest 
learning rates, and 2) in regular grammars, the 
closest-to-human network did not correspond to the 
one with the best performance. Finally, we obtained 
the learning curves for the 8 best-performing models 
(4 grammars * 2 network types) in order to compare 
them with the human ones. The results are shown in 
figure 2. Our analysis revealed that learning occurred 
over trials but differently for FF, RR and humans (all 
BF>>3e+15, error<0.01%). Specifically, a post-hoc 

analysis for each grammar separately suggests that 
recurrent architectures are closer to human behavior 
at every level of the Chomsky hierarchy, with the 
exception of grammar B, for which recurrent and feed-
forward models cannot be distinguished, as further 
discussed below. 

 

 
Figure 2. Results over trials for humans (in black) feedforward 

(in blue) and recurrent (in red) networks. For humans in (A) each 
bin is an average over 40 trials (20 trials before and after 
respectively, except the last bin which includes the last 40 trials of 
the experiment). Each panel represents a grammar type. 

In order to shed some light on the difference we 
observed in the regular grammar B, we collected 8 
additional artificial regular grammars from a recent 
review (Katan and Schiff, 2014) and tested both our 
recurrent and feedforward architectures on each 
grammar. Given our previous results, we hypothesized 
that RR networks would perform better (i.e., closer to 
humans) than FF networks in simpler grammars. 
Consequently, we defined 5 simple metrics to 
characterize the complexity of each grammar (see 
fig.3 for details).  

 
Figure 3. A) The upper panel shows the performance of FF (in 
blue) and RR (in red) architectures for each grammar (from 1 to 10 
of the x-axis), averaging over 20 initialization over a training set of 
500 trials. Grammars A and B are respectively 7 and 9. The 
difference in the performance between the two architectures is 
shown in the lower panel (the same sorted difference in light grey). 
B) Pearson indexes obtained correlating the performance of FF and 
RR networks and their difference (respectively in blue, red and 
black) with the 5 complexity metrics across the 10 grammars 
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Overall, the recurrent network always performed 
better than the feedforward one for all 10 grammars 
(fig.3A, upper panel). However, the difference between 
the two architectures was not constant across 
grammars. As shown in figure 3B, such difference 
correlated significantly (and negatively) with each of 
the complexity metrics we defined (see fig 3B; all 
BF>5, error<0.01%), suggesting that the difference 
between the two architectures is inversely correlated 
with the complexity of the grammars. Recurrent 
networks outperform feedforward ones in simpler, but 
less so in more complicated grammars.  

Discussion 
In this study we demonstrated that recurrent neural 

networks mimic human artificial grammar learning 
more closely than feedforward architectures, 
irrespective of the grammar’s level within the Chomsky 
hierarchy. This result supports the hypothesis that 
recursion is key in cognitive processes such as 
language (Jackendoff, 2011). As already mentioned, 
previous studies showed that humans can learn to 
classify sequences as correct or not according to 
grammatical rules, and such knowledge appears to be 
to some extent implicit (Rohrmeier et al., 2012). 
However, in a usual AGL experiment, participants are 
first asked to memorize a set of sequences (training 
phase) and then to classify a new set as correct or not 
(testing phase). Here, we combined the two phases 
such that training and testing occur at the same time, 
allowing us to track the learning dynamics as it 
progresses. This design let us compare the 
participants’ learning with the artificial networks’ one. 
Importantly, we showed that both feedforward and 
recurrent neural networks can learn artificial grammars 
within the same limited number of trials as for human 
participants. However, the overall behavior of the 
recurrent networks, and in particular their learning 
dynamics, was closer to human behavior. 

Previous studies have investigated mostly recurrent 
rather than feedforward networks in AGL, even though 
implicit learning has been frequently related to 
feedforward processes(Lamme and Roelfsema, 2000; 
Boly et al., 2011). Furthermore, most of the studies 
employed thousands (or tens of thousands) of 
sequences to train the models’ parameters. In our 
study, we implemented a fairer comparison with 
human performance, as both artificial networks and 
human participants were trained on the same limited 
number of examples (~500). Moreover, differently than 
previous studies on artificial grammar learning in 
humans, we adopted an experimental design in which 
training and testing occurred at the same time, 
allowing a direct comparison of learning dynamics (i.e., 
learning curves) between humans and artificial neural 

networks. All in all, this comparison reveals that 
recurrent models perform closer to humans than 
feedforward ones, except in more complicated –and 
supposedly implicit- grammars. For those grammars 
(e.g. Grammar B), human performance remains poor, 
and can equally well be accounted for by recurrent or 
feedforward models. In the two regular grammars we 
observed a significant difference in participants’ 
awareness of the rules. In grammar A participants 
performed better at the questionnaire than in grammar 
B, coherently with the hypothesis that simpler 
grammars are more likely to be learnt consciously 
(Sun and Peterson, 1994; Halford et al., 1998). The 
distinction between implicit and explicit processes has 
been expressly designed in an integrated model tested 
also on artificial grammar tasks (Sun, 2006; Sun et al., 
2007), providing evidence in favor of the hypothesis 
that implicit processes precede explicit ones (Windey 
and Cleeremans, 2015) and are prominently involved 
in complex grammars (Reber, 1976; Halford et al., 
1998).  Interestingly, our results reveal that in the more 
implicit grammar A, both ANN architectures reliably 
tracked human behavior, whereas only recurrent 
networks achieved this goal in more explicit grammars. 
This result draws a compelling parallel between 
feedforward/recurrent and implicit/explicit processes, 
consistently with results in visual perception (Lamme 
and Roelfsema, 2000; VanRullen and Thorpe, 2001) 
and neuroscience (Koch et al., 2016).  
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