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Abstract: 

A naturalistic spoken recall paradigm with fMRI was used 
to investigate how the structure of a complex realistic 
experience affects memory. Subjects watched short 
movie clips and then verbally recalled the movie details 
aloud while being scanned. To quantify the structure of 
the movies, we transformed each movie plot into a 
network, where nodes are individual movie events and 
the connections between them are determined by 
content similarity. Inter-event similarity was computed 
by correlating high-dimensional sentence embeddings 
derived from human-generated text descriptions of the 
movie events. Behavioral results showed that the 
centrality of events within the network (i.e., the overall 
number and strength of connections with other events) 
positively predicted recall performance. Higher centrality 
also predicted stronger univariate activation and the 
reactivation of event-specific multi-voxel patterns during 
recall in the posterior medial cortex, a brain area thought 
to represent abstract ‘situation models.’ 
Representational similarity analysis revealed that the 
neural pattern similarity structure of default network 
areas during recall reflected the text-based narrative 
network structure. Our study introduces a novel 
approach to quantify the structure of complex narratives 
and demonstrates that inter-event structure predicts 
behavioral and neural markers of memory under 
naturalistic conditions. 
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Introduction 

For several decades, the dominant approach to 
studying human memory recall has depended on trial-
based learning paradigms where subjects are 
presented with lists of random isolated words or 
pictures (e.g., Murdock, 1962). However, in daily life we 
are more likely to encounter structured material than 
random lists of items. A more typical real-world use of 
memory is describing a recent experience in one’s own 
words; for example, relating the events of one’s day to 
a friend over dinner. This form of extended narration-
like recall does not strictly follow the principles of 
isolated-item list learning and memory (Chen et al., 
2017; Heusser, Fitzpatrick, & Manning, 2018; Kintsch, 
1982). 

Unlike a single item in a list learning paradigm, 
complex real-life experiences consist of multiple inter-
related components or events, which often form 
coherent narratives. Earlier work on narrative 
processing showed that the canonical structure of 
stories (i.e., conflict and resolution) and causal 
relationships between events affect comprehension 
and memory for text passages (e.g., Trabasso & van 
den Broek, 1985). While the narratives used in these 
studies were certainly more complex than random word 
lists, these experiments were still limited in that they 
relied either on relatively short and carefully designed 
episodes, or on extensive manual analysis of existing 
text documents. 

Here, we introduce an approach for quantifying and 
exploring narrative structure which is easily 
generalizable to different types of narratives. In this 
method, each narrative (movie plot) is automatically 
transformed into a network of interconnected events 
based on semantic similarity measured from sentence 
embedding distances; embeddings were generated 
from a deep learning based natural language model. 
We show that narrative structure can be used to predict 
memory behavior and brain responses during unguided 
spoken recall, as people recount the complex movie 
events they have seen freely from memory.           

Methods 

Fifteen subjects watched a series of 10 short movie 
clips and then verbally recalled the movie plots in their 
own words irrespective of the order of presentation. 
Both tasks were performed while the subjects were 
being scanned. The movies were on average 4.62 
minutes long and had narratives which varied in content 
and structure.  

To quantify and assess the inter-event structure of the 
movie plots, we employed an approach wherein we 
transformed a narrative into a graph/network (Figure 1). 
In this narrative network, the events that constitute a 
movie plot (nodes) form connections with each other 
(edges), and the connection strength between a pair of 
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events is determined by their content similarity (edge 
weight). To build a narrative network for each movie, 
human annotators first segmented the movies into 
shorter events (20 events per movie on average, 202 
events in total) and provided written descriptions for 
each event. The text descriptions were in turn encoded 
into high-dimensional vectors with Google’s Universal 
Sentence Encoder (USE; Cer et al., 2018). The 
connection strength between event node pairs was 
computed by correlating their corresponding USE 
vectors. The ‘centrality’ or importance of each individual 
event was defined as the PageRank of each node in the 
network, such that events with stronger and greater 
number of connections with other events have higher 
centrality. 

Each fMRI subject’s recall speech was manually 
transcribed, segmented into discrete utterances, and 
matched to the movie events to identify which specific 
movie events were recalled. The recall text segments 
were also transformed into USE vectors to be compared 
with the vectors based on movie annotations.  

Functional MRI data were first motion and distortion 
corrected using FSL (https://fsl.fmrib.ox.ac.uk/fsl) and 
then projected onto a standard template surface 
(fsaverage6) and smoothed using FreeSurfer 
(https://surfer.nmr.mgh.harvard.edu/). The functional 
data were additionally high-pass filtered, z-scored 
within each scanning run, and shifted by 3 TRs (TR = 
1.5 s) to account for the delay in hemodynamic 
response. 

Behavioral Results 

Consistent with prior studies (Chen et al., 2017; 
Heusser, Fitzpatrick, & Manning, 2018), naturalistic 
narrative recall behavior showed characteristics distinct 
from free recall behavior in list-learning experiments. 
Subjects on average recalled 9 of the 10 movies and 
spent 3.27 minutes describing each movie. The recall 
order of movie events very strictly followed their 
chronological order within each movie (ρ = .97; Figure 
2A), whereas the recall at the movie level was 
occasionally out of order (ρ = .52). The recall of a movie 
was graded rather than all-or-none, as the proportion of 
scenes recalled per movie varied across movies in each 
subject (M = 76.9 %). Recall probability was not higher 
for the events at the beginning and end of each movie 
(Figure 2B), contrary to strong serial position effects 
observed in traditional list-learning experiments 
(Murdock, 1962). Although there was no clear effect of 
temporal order, inter-event connections in the narrative 
network significantly affected recall performance: high 
centrality events were more likely to be recalled than 
low centrality events (Figure 2C; t14 = 5.14, p < .001). 
Event centrality was also positively correlated with 
recall accuracy (Figure 2D; r = .17, p = .014), measured 
as the similarity between USE vectors from the recall 
speech transcription and the movie scene description of 
the corresponding events.   

fMRI Results 

We next examined the relationship between event 
centrality and neural responses during recall of the 

Figure 1. (A) Schematic of the narrative network approach.  (B) Example narrative networks of four movies used 
in the experiment. The strength of connections between events was thresholded at r = .6 for visualization 
purposes. (C) Time course of the event centrality (PageRank) for all 10 movies used in the experiment. Each 
data point represents a single movie event. Different colors indicate different movies. 
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events. A whole-brain univariate analysis was 
performed to identify brain regions whose activation 
scaled with the event centrality. For each point on the 
brain surface of each subject, we computed the mean 
activation of each movie event recalled by the subject. 
Event centrality was next regressed onto the event-by-
event activation. A one-sample t-test against 0 was 
applied to the resulting parameter estimate maps from 
all subjects, producing a group-level t statistic map 
(Figure 3A). The regions whose activation showed the 
strongest positive relationship with event centrality were 
posterior medial cortex (PMC) and angular gyrus, 
previously known to show increased activation during 
memory recollection (the general recollection network; 
Rugg & Vilberg, 2013). 

We next tested whether event centrality predicts the 
strength of event-specific memory reactivation using 
multivariate pattern analysis. Memory reactivation was 
measured as between-subjects similarity across event-
specific brain activation patterns during movie watching 
and recall (Chen et al., 2017). We found that the event 
centrality was positively correlated with the event-
specific memory reactivation in PMC (Figure 3B; t14 = 
3.16, p < .01), an area indicated in the univariate 
analysis above and also thought to represent abstract 
‘situation models’ of events (Ranganath & Ritchey, 
2012). This positive relationship was not observed in 
low-level sensory areas such as auditory and motor-
somatosensory cortices (p’s > .7).  

Finally, we performed whole-brain representational 
similarity analysis (Kriegeskorte, Mur, & Bandettini, 
2008) to test whether the representational similarity 
structure based on brain activation patterns during 
recall reflects the narrative network structure based on 

the movie annotation text. We first divided each 
subject’s cortical surface into 1000 parcels following 
Schaefer et al. (2018). For each parcel, we computed 
pairwise correlations between the activation patterns of 
recalled movie events in a between-subjects manner, 
separately for each movie. The correlation coefficients 
were concatenated across all movies and in turn 
correlated with the correlations between movie 
annotation USE vectors. One-sample t-tests were 
performed on the resulting brain-text correlations from 
all subjects. We found that parcels within and around 
PMC showed the highest brain-text representational 
similarity during recall (Figure 3C).  

Conclusions and Future Directions 

The current study demonstrated that unguided recall of 
a complex naturalistic experience is predicted by inter-
event structure and has different properties from those 
observed in a traditional list learning paradigm. Using 
an approach of transforming narratives into networks, 
we showed that high event centrality, or rich 
interconnections with other events based on sentence 
embedding similarity, predicted better subsequent 
recall. In addition, high centrality was associated with 
higher activation and stronger event-specific pattern 
reactivation in recollection-related brain areas during 
recall. Neural patterns in high-level associative areas 
also exhibited a representational structure similar to the 
narrative network structure. 

The link between high event centrality and behavioral 
and neural markers of memory may have several 
different but not mutually exclusive explanations. High 

Figure 2. Behavioral results. (A) Recall order rank of movie events (1 = recalled first ~ 14 = recalled last, 
regardless of how many events a subject recalled) in an example movie (“A Single Life”) as a function of 
their chronological order. Shaded areas indicate SEM across subjects. (B) Recall probability (proportion of 
events recalled) as a function of epochs in the movie, averaged across subjects. Colored lines represent 
individual movies. The black line represents the average across all 10 movies. (C) Recall probability for high 
vs. low centrality events based on the median split of movie events’ PageRank centrality. Recall probability 
was computed separately for each movie and then averaged across movies for each subject. Gray lines 
show individual subjects’ data. The black line shows the average across subjects. Error bars represent SEM 
across subjects. (D) Relationship between the event centrality and the Movie-Recall text similarity. Each dot 
represents a movie event. Different colors of the dots represent different movies. 

58



centrality events might be encoded more robustly 
during movie watching through repeated presentation 
and reactivation of the common semantic features that 
connect the events to other events. It is also possible 
that high centrality events are more easily accessed 
during recall as they are more likely to be cued by other 
related events. Further analyses will examine these and 
other potential mechanisms behind the centrality 
effects.  

 In the current study, connections between events in 
a narrative network were defined by the semantic 
similarity between the movie annotations of the events. 
However, narrative networks can be built based on 
other types of inter-event relationships, for example 
causality (Trabasso & van den Broek, 1985). Indeed, 

our preliminary analyses (not included here) suggest 
that if centrality is calculated from human ratings of 
causality between event pairs, this also predicts 
behavioral recall performance and memory reactivation 
measured as movie-recall fMRI pattern similarity. 
Further analyses will explore the relationship between 
different types of narrative structure and their relative 
contribution to brain responses during naturalistic 
recall.     
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Figure 3. fMRI results. (A) The whole-brain surface 
map of brain areas where univariate activation 
during recall had a positive relationship with the 
centrality of the recalled events. p < .001 
(uncorrected). (B) Three regions of interest (Left; 
orange = posterior-medial cortex, blue = auditory 
cortex, green = motor-somatosensory cortex) and 
the mean Pearson correlation between the event-
specific centrality and movie-recall between-
subjects pattern similarity (Right). Hollow circles 
represent individual subjects. Filled diamonds 
represent the average across subjects. Error bars 
indicate SEM across subjects. (C) The whole-brain 
surface map (medial view) of cortical parcels that 
show positive correlations between the event-wise 
movie annotation text similarity matrices and the 
recall fMRI pattern similarity matrices. p < .01 
(uncorrected). 
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