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Abstract

It is largely unclear how the brain learns to generalize
to new situations. Although deep learning models of-
fer great promise as potential models of the brain, they
break down when tested on novel conditions not present
in their training datasets. One of the most successful
models in machine learning are gated-recurrent neural net-
works. Because of its working memory properties here
we refer to these networks as working memory networks
(WMN). We compare WMNs with a biologically motivated
variant of these networks. In contrast to the multiplica-
tive gating used by WMNs, this new variant operates via
subtracting gating (subWMN). We tested these two mod-
els in a range of working memory tasks: orientation re-
call with distractors, orientation recall with update/addition
and distractors, and a more challenging task: sequence
recognition based on the machine learning handwritten
digits dataset. We evaluated the generalization proper-
ties of these two networks in working memory tasks by
measuring how well they copped with three working mem-
ory loads: memory maintenance over time, making mem-
ories distractor-resistant and memory updating. Across
these tests subWMNs perform better and more robustly
than WMNs. These results suggests that the brain may
rely on subtractive gating for improved generalization in
working memory tasks.

Keywords: Gating; Working memory; Recurrent neural net-
works; Cortical Circuits

Introduction
Deep Learning models loosely based on neuroscientific princi-
ples are generating increased interest in fields like psychology
and neuroscience as a way of modelling various cognitive and
neuroscientific phenomena (Hassabis et al. (2017)).

The mechanisms underlying humans ability to generalize to
new situations have remained largely unclear and far outper-
forms current machine learning neural networks (Lake et al.
(2017)).

1Co-senior authors.

Current machine learning recurrent networks rely heavily
on the use of gating to solve different tasks, such as used
in state-of-the-art models of language. In neuroscience there
has been a long standing debate on whether the brain relies
on subtractive or divisive gating (Doiron et al. (2001); Mejias et
al. (2013); El Boustani and Sur (2014); Seybold et al. (2015)).
Recently, we proposed a mapping between gated recurrent
neural networks (RNNs) and cortical microcircuits observed
across the brain (Costa et al. (2017)) where the key difference
is that networks operate with subtractive rather than multiplica-
tive gates as found in vanilla machine learning gated-RNNs
(Fig. 1).

In this study we compare these two forms of gating (sub-
tractive and multiplicative) in three working memory tasks:
(i) orientation recall task with distractors (Manohar et al.
(2019)), (ii) orientation recall with addition/update and dis-
tractors (Fallon et al. (2018)), and (iii) a more challenging
sequence recognition task. We studied the working mem-
ory generalization by testing the working memory load in
three ways that were not presented during training: (i) mem-
ory maintenance (by adding more distractors), (ii) distractor-
resistance (by increasing the strength of the distractors) and
(iii) memory updating (using the recall with addition task).

Results

Our preliminary findings show that using subtractive instead
of multiplicative gating in memory units can have important ef-
fects on the way models learn and perform on test data and
extrapolate to new settings for different working memory prob-
lems. These results can be summarized into two groups: the
effects of different gating mechanisms in the training conver-
gence of the networks, and the performance they achieve in
testing or extrapolation datasets. Below we discuss the differ-
ent tasks used and the respective results.
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Figure 1: Simplified illustration of the working memory
units. (a) Artificial working memory unit (WU) as used in ma-
chine learning, which relies on multiplicative gating (illustrated
with element-wise multiplication – filled circle). (b) Working
memory cortical unit (WCU), which relies on subtractive gat-
ing (illustrated with a minus). In both models input arrives at
pyramidal cells (PC), which we propose to be located in layer-
4 or layer 2/3 in the cortex. This neuron then projects to a
memory cell in layer-5 of the cortex, implemented by a popu-
lation of recurrently connected pyramidal cells recurrent neu-
ral network. This in turn sends output to other units or to the
output layer. Importantly, the flow of information is controlled
by a gating unit or interneuron (IN; red), which can be multi-
plicative (a) or subtractive (b). See Costa et al. (2017) for a
more detailed description of these models.

Single item working memory task

We started out by testing both models with a simple working
memory task, which is based on recent orientation working
memory encoding tasks (Manohar et al. (2019); Fallon et al.
(2018)). The network receives both a cue signal {0,1} and
an orientation encoded in the following range [0..1]. The task
of the network is to remember the cued orientation and ignore
distractors until it is asked to recall the original orientation (Fig-
ure 2a).

For this task all models were trained on sequences of 20
time steps. Each model was comprised of 20 hidden units
receiving two-element vectors containing the orientation and a
mask representing the cue. The models were all implemented
in Python using PyTorch and trained for 1000 epochs using
the ADAM (Kingma and Ba (2014)) optimizer with a learning
rate of 0.01. In each epoch 100 instances were sampled at
random from the given range and fed into the model in batches
of 10. The hidden units project into a single output unit and the
error is measured using the mean squared error between this
output and the target. Each model was randomly initialized 3
times with different seeds.

During training, we found that WMN converged quickly to
a solution, while subWMN required exposure to more training
examples to achieve similar results (Figure 2b). Interestingly,
this is in contrast with our results in more complex problems

(see next sections). However, both models eventually con-
verged to similar solutions.

We hypothesize that subtractive gating has a regularizing
effect on the error landscape, enabling the networks to find
better solutions. To test this we varied the testing conditions
independently along two parameter: the number of distractors
and their magnitude. The results shown in Figures 2c and 2d
demonstrate that indeed, subtractive gating allowed the net-
works to generalize better. However, the performance in both
networks decreases substantially. When increasing the num-
ber of distractors, subWMNs exhibited asymptotic behaviour
in their errors as the number of distractors was increased.
Whereas when increasing the magnitude of the distractors the
performance in both models decreased substantially, but less
so in subWMNs. This is expected given that we are going of
the range of distractors with which the network was trained.
Not only that, but because of the loss function used, incorrect
recall of cued stimuli will incur in larger errors.
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Figure 2: Subtractive gating generalizes better to distrac-
tors in working memory task. (a) Schematic of the task. The
network needs to learn to recall one orientation, while ignor-
ing a number of distractors. Note that the network is trained
and tested with a large number of orientations. (b) Learning
curve for both models. (c) Memory maintanence test with an
increasing number of distractors for both models. (d) Resis-
tance to distractor strength for both models.

Adding working memory task
This is a more challenging task in which we studied working
memory update (related to Fallon et al. (2018)). Compared to
the previous task the network is cued a second time and its
task is to update the old orientation by adding it to the new
one (i.e. if the old orientation was 0.3, and the new 0.5, the
final orientation should be 0.8). As before the network needs
to also ignore distractors. For this task, the networks were
trained on sequences of length 50 and used 50 hidden units.
The starting learning rate was also lowered to 0.0001 and de-
cayed by a factor of 0.1 after 10 epochs of no improvements
until reaching a minimum of 1e-8. As in the previous task,
we use 3 random initializations for each model and the data
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generator.
While in the previous task training was faster with WMN,

this is no longer the case in this harder setting. As we can see
in results shown in Figure 3b, both networks converge at sim-
ilar rates, but now a characteristic irregular behaviour can be
observed in the learning curve of WMN, briefly having much
worse performance before improving again until converging to
a solution.

As in the previous task, generalization performance in Fig-
ure 3c and 3d under similar variations show that subWMN
not only incurred in lower error, but also less variance in their
performance, which suggests that the solutions found by this
class of models is more robust. Interestingly, the difference
between the two models in this, harder task, is more evident
than in the previous task.
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Figure 3: Subtractive gating generalizes better to distrac-
tors in working memory task with addition. (a) Schematic
of the task. Two orientations (1 and 2) are cued and should
be added for recall, while ignoring a number of distractors. (b)
Learning curve for both models. (c) Memory maintanence test
with an increasing number of distractors for both models. (d)
Resistance to distractor strenght for both models.

Temporal handwritten digit working memory task

Most real life working memory tasks that we are faced with
require us to process complex temporal inputs. We tested
the networks with a problem – recognizing handwritten digits
– that is derived from the machine learning community and
is a more challenging test of the memory properties of these
networks. We trained the networks to solve a version of this
MNIST dataset where the pixels are presented as a single
sequences of 784 steps (i.e. showing only one pixel at a time).
While this may not be a natural stimuli, it still serves as a good
test of the ability of the models to integrate complex evidence
along large time spans.

For this task, the capacity of the hidden layer was increased
to 100, and instead of projecting its hidden state into to a sin-
gle output unit, they where linearly projected into 10 softmax
units in order to compute a probability for each of the 10 digits.

We used a standard cross entropy loss function between the
correct label and the output probability given by the network.

As observed in Figure 4 the irregular behaviour of the val-
idation curve in WMN is even more pronounced. The same
learning curve for subWMN, is not only smoother but tends to
converge to lower values of the cross entropy score. This has
important consequences for the accuracy of the models, but
also for their confidence: models with lower cross entropy are
more confidence in their decisions, even if they achieve the
same classification accuracy.
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Figure 4: Temporal handwritten digit working memory
task. (a) This task tested the memory properties of the net-
work, as they are trained to recognise a sequence of pixels
(i.e. they only receive as input one pixel at the time as repre-
sented by the small red box). The network is trained to recog-
nise 10 different digits (some examples are given in bottom
inset). (b) Learning curve (based on cross entropy) of the two
models over. (c) Final cross entropy (left) and accuracy (right).
Both models perform well, but subWMNs have lower variance,
suggesting that they are a more robust model.

Discussion
Here we have provided some initial evidence suggesting that
subtractive gated RNNs have better generalisation properties
in working memory tasks. We should highlight that the gener-
alization tests done were never seen during training. Impor-
tantly, these results appear to also apply to more challenging
tasks where the network needs to remember relatively com-
plex temporal sequences.

It is unclear why subtractive gating should lead to better
generalisation than multiplicative gating. However, we hypoth-
esize that subtractive gating has a regularizing effect, enabling
the networks to find more robust solutions. In future work we
aim to study both the cause of this effect and its robustness.

In addition, while the networks studied here show some
form of improved generalisation, they are still far from what
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humans can do. It would be interesting to investigate what
other biological constraints may further improve generalisa-
tion in these tasks. On the other hand, humans and other
animals do not always behave flawlessly. Therefore, it would
be important to relate our findings to similar experimental ob-
servations from the working memory literature (Manohar et al.
(2019)).

As next steps we plan to study the representation learned
by the two models. Given that such a relatively simple change
in gating mode has an effect on the generalisation properties
of the network we also expect this to be reflected in the repre-
sentation profile of the network.

Overall, our results suggest that recurrent networks with
subtractive gating provide better models of working memory.
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