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Abstract

Hierarchical Reinforcement Learning algorithms have
successfully been applied to temporal credit assignment
problems with sparse reward signals. However, state-of-
the-art algorithms require manual specification of sub-
task structures, a sample inefficient exploration phase
and lack semantic interpretability. Human infants, on the
other hand, efficiently detect hierarchical sub-structures
induced by their surroundings. In this work we propose
a cognitive-inspired Reinforcement Learning architecture
which uses grammar induction to identify sub-goal poli-
cies. More specifically, by treating an on-policy trajectory
as a sentence sampled from the policy-conditioned lan-
guage of the environment, we identify hierarchical con-
stituents with the help of unsupervised grammatical in-
ference. The resulting set of temporal abstractions is
called action grammars (Pastra & Aloimonos, 2012) and
can be used to enable efficient imitation, transfer and on-
line learning.
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putational Linguistics

Introduction

Genetically inherited inductive biases enable human infants to
infer hierarchical rule-based structures from language, visual
input as as well as auditory stimuli (M. C. Frank, Slemmer,
Marcus, & Johnson, 2009; Marcus, Fernandes, & Johnson,
2007). Several MEG and fMRI studies provide evidence for a
universal process of hierarchical language comprehension in
the brain (S. L. Frank & Christiansen, 2018; Brennan, Stabler,
Van Wagenen, Luh, & Hale, 2016; Nelson et al., 2017) that
extends to motor control (Pastra & Aloimonos, 2012; Stout,
Chaminade, Thomik, Apel, & Faisal, 2018). By processing
trajectories of an expert, the infant is able to learn policies
over higher level sequences of low level control elements. In-
spired by these observations, this work proposes to overcome
the problem of sub-structure discovery in Hierarchical Rein-
forcement Learning (HRL) by making use of grammatical in-
ference. More specifically, the HRL agent uses grammar in-
duction to extract hierarchical constituents from trajectory sen-
tences. The proposed solution to the credit assignment prob-
lem is split into two alternating stages (see fig. 1):

1. Grammar Learning: Given episodic trajectories we treat
the time-series of transitions as a sentence sampled from
the language of the policy-conditioned environment. Us-
ing grammar induction algorithms (Nevill-Manning & Wit-
ten, 1997) the agent extracts hierarchical constituents of
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the current policy. Based on the estimated production
rules, temporally-extended actions are constructed which
convey goal-driven syntactic meaning. The grammar can
efficiently be inferred (linear time) and provides enhanced
interpretability.

Action Learning: Using the grammar-augmented action
space, the agent acquires new value information by sam-
pling reinforcement signals form the environment. They re-
fine their action-value estimates using Semi-Markov Deci-
sion Process (SMDP) Q-Learning (Bradtke & Duff, 1995).
By operating at multiple time scales, the HRL agent is able
to overcome difficulties in exploration and value information
propagation. After action learning, the agent samples simu-
lated sentences by rolling out transitions from the improved
policy.

By alternating between stages of grammar and action value
learning the agent iteratively reflects and improves on their
behavior in semi-supervised manner. The inferred grammar
parse trees are easy to interpret and provide semantically
meaningful sub-policies. Our experiments highlight the effec-
tiveness of the action grammars framework for imitation, cur-
riculum and transfer learning given an expert policy rollout.
Furthermore, we show promising results for an online version
which iteratively refines grammar and value estimates.

Background

Temporal Abstractions. SMDPs extend Markov Decision
Processes to account for not only reward and transition un-
certainty but also time uncertainty. The time between indi-
vidual decisions is modeled as a random variable, T € Z ..
The waiting time is characterized by the joint likelihood of tran-
sitioning from state s € S to state s’ in T time steps given
action m was pursued, P(s,t|s,m). Thereby, SMDPs allow
one to elegantly model the execution of actions which ex-
tend over multiple time-steps. A macro-action (McGovern,
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Sutton, & Fagg, 1997), m € M specifies the sequential and
deterministic execution of multiple (t,,) primitive actions. Let
rr,, = Li" ¥~ 'r4; denote the accumulated and discounted
reward for executing a macro. Value estimates can then be
updated using SMDP-Q-Learning (Parr, 1998) in a model-free
bootstrapping-based manner:

065l = (10Ot r, 497 max 05 ) )

The DQN (Mnih et al., 2015) objective can then be adapted to
the semi-Markov case:

L(8) :=E[(ry, +Y™ max Q(s',m';07)— Q(s,m;e))z]
m' e AUM

The gradient with respect to the parameters is approxi-
mated by Monte Carlo samples from the experience replay
(Lin (1992); ER) buffer {s,m,rs,,,s',Tm} ~ Dgs. The learning
dynamics can be stabilized by making use of a target network
and gradient clipping.

Context-Free Grammars. Given a start symbol S, a formal
grammar (X,N, S, P) produces an output of strings. Produc-
tion rules P map a set of non-terminal vocabulary N either to
another non-terminal or terminal string within the terminal vo-
cabulary X. Context-free grammars (CFG) (Chomsky, 1959)
constrain the set of productions to either map from one-to-one,
one-to-none or one-to-many. A non-branching and loop-free
CFG is called a straight-line grammar. Given a sample of sen-
tences, grammar induction infers a consistent language gram-
mar. Sequitur (Nevill-Manning & Witten, 1997) sequentially
reads in all symbols and collects repeating subsequences of
symbols into a production rule. The final encoded string is only
allowed to have unique bigrams and inferred production rules
must be used more than once in the derivation of the string.
In order to overcome Sequitur’s problem of noise overfitting,
k-Sequitur (Stout et al., 2018) has been proposed. Instead
of replacing a bigram with a rule if the bigram occurs twice,
it has to occur at least k times. As k increases the grammar
becomes less prone to overfitting and the resulting grammar
is more parsimonious in terms of production rules.

Context-Free Action Grammars

Just like communication, action sequences convey goal-
directed semantic meaning. They consist of hierarchical struc-
tures and are conditioned on the environment in which they
are uttered. Furthermore, many real world problems require
a hierarchy of subgoal achievements which increase in se-
quential difficulty and timescale. A trajectory obtained from
traversing the current policy T can be viewed as a sample
from the language generated by the policy-specific grammar,
L(m|E). Let the terminal vocabulary X consist of the primitive
action space A4, hence £ = 4. We denote ¥ ~ L(nt|E) for
i=1,...N, trajectories. Given a set of trajectories, a CFG
estimate G can be inferred and the resulting production rules
transformed into macro-actions M by recursively flattening

the non-terminals. The action space of the agent is then aug-
mented such that 4¢ = 42U MC. Depending on the gen-
erating policy of the compressed traces, we propose several
grammar-based HRL agents.

Expert & Transfer Grammars. If the traces & are sam-
pled from the language L(n*|E) generated by the optimal pol-
icy, the agent can use the resulting grammar macros in an
imitation learning setting. Before the onset of the first value
learning stage, the action space is augmented with the opti-
mal productions. Furthermore, an agent faced with learning a
curriculum of tasks can make use of the optimal grammar of
an easier solved task. Skills universal to all tasks do not have
to be re-learned at every stage. Instead, the inferred optimal
grammar provides an effective knowledge structure which ac-
celerates the agents learning process.

Online Inferred Grammars. If an episode successfully
terminated, the grammar inference process identifies repeat-
ing sub-goal achieving patterns. We hypothesize that by ex-
tracting action grammar sub-sequences, one compresses the
temporal dimension of the credit assignment problem. After
each grammar compression step, the action space is aug-
mented with a new set of grammar macros. The previous
set becomes inactive. In order to preserve value estimates
between updates, we propose three solutions: (1) Transfer
learning (Oquab, Bottou, Laptev, and Sivic (2014), see fig. 2):
To accommodate the variable set of grammar-inferred skills,
the size of the DQN output layer has to be updated. Transfer-
ring the value-relevant feature detectors between action space
augmentation, allows the agent to use the previously learned
value characteristics. (2) Grammar ER Buffer: It is necessary
to maintain a grammar-altered buffer system in order to store
transition tuples specific to previously inferred macro-actions.
At any given point the agent can only sample macro transitions
which are associated with the currently active set of grammar
macros. Thereby, sample efficiency is increased once a gram-
mar macro is repeatedly inferred. (3) Intra-Macro Updates:
During the execution of a macro-action, one stores the over-
all macro transition tuple < s;,my, 7111, ,Si+t,+1,Tm, 00" >
as well as the individual transitions {< s;,a;, 7, si+1, 1, on” >
}Eif’”. Thereby the agent is able to exploit all gathered transi-
tion experiences throughout the overall learning process.
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Figure 2: Left. Grammar Experience Replay Buffer Right.
Grammar-DQN with adaptive output head.

The length of the sampled trace is going to increase or de-



crease over the course of the learning procedure. The regu-
larization parameter of the k-Sequitur grammar inference al-
gorithm has to be adapted accordingly.

Experiments

The goal of the following experiments is to answer the follow-
ing questions: (1) Does a grammar learned from optimal pol-
icy rollouts allow for rapid imitation learning? (2) Can CFG
grammars be used in order to enhance curriculum learning
by the means of transferring previously learned action gram-
mars? (3) Is online grammar inference and action space adap-
tation able to structure the exploration process of the HRL
agent? In order to answer these question we choose the gen-
eral N-disk Towers of Hanoi (ToH) environment (see fig. 3) as
well as a hierarchically structured gridworld task (see fig. 4).

Solving the N-disk ToH problem requires the agent to iden-
tify a hierarchical and recursive principle. By moving n — 1
disks onto an auxiliary pole and the n-th disk onto the target
pole, the agent is able solve the sparse reward problem. Since
such a routine can easily be formulated within a grammar
parse tree, we hypothesize that the action grammars frame-
work might provide an efficient solution.

nital State (1.11) Trace (9): bafbcdbafec

ol | foafbedbefecdbafbedb
L+  Statel:(311) + X={a,b,c,de f}
a’ ! | ! 2-Sequitur
(1'2) 99 | BCDfBEfDdBb
o el 0.355
(2 3) State 6: (13 3) + N P A[2=Seq
b ! | é B | CEd bafbcd
WL, Final State 7: (333)  +100 C - baf
7. D - ec
_I_ _|_ _i_ E - bc

Figure 3: Left. Sparse Reward RL Formulation of the ToH
Problem. Right. 2-Sequitur ToH (5 disks) Grammar-Macros.

Figure 4: Hierarchically-Structured Grid World Environment.

The gridworld, on the other hand, provides a non-sparse
reward design. The agent (red) has to avoid poisonous items
(black) and collect food (yellow). Hence, the agent is required
to solve a large set of individually smaller subtasks. Finally,
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the agent has to avoid a terminal collision with the moving
blocks (green), whereas the ToH environment rewards the
fastest solution.

Learning with Expert & Transfer Grammars. The right-
hand side of figure 3 shows the grammar and resulting macros
inferred from a trace of the optimal policy 5-disk ToH prob-
lem using the 2-Sequitur. The flattened production rule B —
CEd — bafbcd captures the recursive nature learned by the
grammar. C — baf moves two disks on the auxiliary pole,
while E — bc moves a third disk from source to target pole
and one disk back onto the source pole. The Expert Grammar
HRL agent’s action space is augmented as follows:

2% = 2uM*5 = AU {bafbcd,baf,ec,bc}

Figure 5 displays learning results for different SMDP-Q-
Learning agents with macro-actions defined by the production
rules inferred from a single trace of the optimal policy.
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Figure 5: Expert & Transfer Grammar (ToH): Left. 5 Disk En-
vironment. Right. 6 Disk Environment. Averaged over 5 ran-
dom seeds. Median, 10th and 90th percentile.

The grammar macros accelerate the learning progress and
reduce the variance of policy rollouts. We hypothesize that this
is due to the temporal compression of the sequential problem
provided by the macro grammars. Finally, the Transfer Gram-
mar agent is capable of transferring the knowledge distilled in
a simpler optimal grammar(4 disks) to a more complex setting
(6 disks).
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Figure 6: Expert & Transfer Grammar (Gridworld): Left. Ex-
pert Grammar. Right. Transfer Grammar. Averaged over 5
random seeds. Median, 10th and 90th percentile.

The gridworld Grammar-DQN agent (see fig. 6) again infers
a set of macro-actions from a single expert rollout. Afterwards,
the output layer and action space are augmented. The fixed
architecture of the DQN is a two-layer 128 hidden units multi-
layer perceptron trained using Adam (Kingma & Ba, 2014) with



a batch-size of 32. The two Expert Grammar-DQN agents
differ in the amount of macro-actions (top two and four most
used productions in the encoded policy trace) inferred with 2-
Sequitur on a converged DQN agent rollout. Again, the expert
grammar-endorsed agent is significantly accelerated in their
initial learning progress. The two Transfer Grammar-DQN
agents, on the other hand, infer a set of two grammar macros
from a single sub-optimal separate DQN agent’s (trained for
25 or 75 episodes) policy rollout. Our experiments show, that
even with noisy non-optimal rollouts the grammar agents are
able to exploit the inferred structure of the environment.

Learning with Online Inferred Grammars. Figure 7 dis-
plays the results of the online grammar inference framework
for the gridworld task. Every 500 optimization steps the DQN
agent infers a new set of grammar macros from a self-rollout
using 2-Sequitur. We augment the action space with the top
two most used flattened production rules in the trace compres-
sion. The learning dynamics provide a competitive extension
to the general DQN framework.
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Figure 7: Online Grammar: Gridworld Grammar DQN. Aver-
aged over 5 random seeds. Median, 10th and 90th percentile.

We want to emphasize the relationship between grammar
inference and exploration. In our experiments we found that
the frequency of grammar updating as well as the grammar
inference hyperparameters play a crucial role.

Conclusion

Inspired by hierarchical parse trees of sequential behavior,
we introduced a novel cognitive decision making framework
which exploits grammatical inference to identify temporally-
extended actions. Our contributions are the following: (1) +
(2) CFG-based HRL agents provide efficient and interpretable
solutions to imitation and transfer learning tasks. (3) Alternat-
ing between grammar updates and learning action values is
an effective method to learn an optimal grammar as well as
an optimal policy online.

In future work we are interested in exploring stochastic
grammars as well as their incorporation into model-based RL
approaches. Ultimately, we envision a dictionary of action
sequences which provides an expandable library of skills for
agents which act in diverse naturalistic environments. This
could provide a mayor contribution to a key endeavor in gen-
eral artificial intelligence: Life-long learning.
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