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Abstract

A longstanding question in neuroscience is how animals
and humans select actions in complex decision trees.
Planning, the evaluation of action sequences by anticipat-
ing their outcomes, is thought to coexist in the brain with
simpler decision-making strategies, such as habit learn-
ing and heuristics. Though planning is often required
for optimal choice, for many problems simpler strategies
yield similar decisions, making them difficult to disam-
biguate. The scarcity of behavioral tasks that can dissoci-
ate planning from other decision mechanisms while gen-
erating rich decision data has hindered our understand-
ing of the neural basis of planning. We developed a novel
navigation task in which mice navigate to cued goal loca-
tions in a complex maze. A targeted search through the
large space of possible maze layouts in that environment
maximizes the number of decisions that are informative
about the use of planning. Over the course of training
mice learn shorter paths to goals, and the individual deci-
sions composing these paths are better accounted for by
planning than vector navigation. With hundreds of infor-
mative decisions per behavioral session, this paradigm
opens the door to the study of the neural basis of route
planning.
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Behavioral paradigm

In the task, mice navigate a tortuous elevated maze to col-
lect rewards at visually cued locations. The apparatus itself
consists of a gridlike arrangement of elevated platforms with
reward ports connected by removable walkways (Figure 1).
By choosing which of the 60 elevated walkways are removed,
the experimenter can choose from a large number of possible
maze layouts. On each trial, one of the 36 possible reward
sites is cued with a stimulus light. The mouse navigates to the
cued goal location and upon arrival receives a reward. After a
short interval another goal location is randomly selected and
cued to start the next trial. The trajectories followed by the
animals are stored for analysis.

As reward can be delivered at any one of 36 possible loca-
tions and the sequence of reward locations is randomised, the
utility of habitual strategies is minimized. Due to the tortuosity
of the maze, vector navigation often leads to choices which
are not on the shortest path to the goal (see example trial in
Figure 2).

3. Reward obtained,
light off

 

4. New randomly chosen 
goal light turned on
 

5. Mouse 
navigates to new 

1.2 m
1. Goal light on

2. Mouse 
navigates to goal 

20 cm

Reward port Available reward
 

Elevated walkway
 

Figure 1: Experimental apparatus and behavioral task flow.

Maze layout optimization
To maximize the discriminability between planning and vec-
tor navigation, we performed a guided search through the
large space of possible maze layouts. We randomly generated
thousands of maze layouts and for each layout we calculated
the fraction of decisions for which planning and vector naviga-
tion recommended different actions (Figure 3). The higher this
value the higher the benefit of planning over vector navigation.

In addition to optimizing for the discriminability of planning
we jointly optimised for layouts that have a flat distribution of
betweenness centrality across nodes. Betweenness central-
ity is the fraction of all shortest paths passing through a given
location, so nodes with high centrality (e.g. bottlenecks) are
on average better choices than nodes with low centrality (e.g.
dead ends). Such differences in average value could poten-
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Figure 2: Example trial with trajectories generated by planning
and vector navigation. The tortuous maze structure rewards
the use of planning with routes shorter than those obtainable
by vector navigation.

tially be exploited by habitual learning mechanisms, so we
sought to make the centrality distribution as flat as possible
while preserving the discriminability of planning from vector
navigation. From the optimality frontier (see blue line in Fig-
ure 3) different configurations can be selected that represent
varying degrees of compromise between the two criteria in
this simultaneous optimization.

Analysis of decisions at choice points
We analyzed the routes taken by mice by calculating for each
subject an index of how often they chose options favoured by
planning and by vector navigation (Figure 4). The {planning,
vector navigation} index was defined as the fraction of deci-
sions on which the subject took the option recommended by
{planning, vector navigation}, normalized to yield a value of 0
for a random walk and 1 for a deterministic {planning, vector
navigation} agent.

After 9 days of training on the same maze layout, the
choices observed for all 7 mice tested revealed stronger influ-
ence of planning than vector navigation. The obtained results
are in the range expected for a planning strategy with some
stochasticity.
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Figure 3: Search for maze configurations that optimally dis-
ambiguate planning from vector navigation and habit learn-
ing. The fraction of informative states is defined as the frac-
tion of choice points where planning and vector navigation dis-
agree on action selection. The mean/variance centrality ratio
is calculated for the distribution of the betweenness central-
ities across each of the 36 choice points within each maze
layout. Blue line represents the Pareto optimal frontier. Differ-
ent colors represent the number of elevated walkways in the
layout (Nedges).
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Figure 4: Analysis of decisions at choice points after training.
Choices taken by mice (circles, N=7) are more compatible with
planning (green region) than with vector navigation (orange
region). The shaded regions represent the 95% confidence
region for simulated behavior at a range of choice stochastic-
ity levels. Note that because planning and vector navigation
do not always yield opposing recommendations, the shaded
green and orange regions delimiting results expected for plan-
ning and vector navigation agents do not lie directly on the
respective index axis.
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