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Abstract: 

The prefrontal cortex (PFC) is necessary for the 
expression of flexible behavior. In over-trained monkeys, 
lateral PFC neurons represent a variety of task-relevant 
information in a high-dimensional code. In humans, the 
relatively low reliability of fMRI BOLD activity patterns 
and the difficulty of decoding their information content 
poses an obstacle to measuring PFC representational 
geometry. We systematically evaluated multi-voxel 
pattern analysis (MVPA) and the alternate method of fMRI 
adaptation for their reliability in estimating 
representational geometry and dimensionality in lateral 
PFC. Subjects solved a 3-dimension, audio-visual, parity 
task over 5 fMRI sessions. Leveraging the large amount 
of within-participant data, we estimated all pair-wise 
pattern distances and cross-condition adaptation effects 
in lateral PFC and visual cortex. We show that fMRI 
adaptation provides significantly more reliable estimates 
of the distances between task conditions in the lateral 
PFC’s representational space compared to MVPA.    
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dimensionality, repetition suppression, MVPA 

Introduction 

A central problem in cognitive neuroscience is 
understanding the nature and form of human prefrontal 
cortex (PFC) task representations. In several theories 
of PFC function, these task representations are posited 
to play a critical role in the expression of flexible, goal-
directed behavior (Miller & Cohen, 2001). Previous 
fMRI studies of PFC have focused primarily on 
examining what information is encoded in PFC activity 
patterns (representational content), but far fewer 
studies have examined how this information is 
organized (representational format or geometry). Yet, 
this latter property is of paramount importance as the 
format determines the accessibility of encoded 
information to downstream circuits and so shapes 
network computation.  

A representation’s geometry is defined as the 
arrangement of responses to task conditions in a multi-
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dimensional space defined by neuronal firing rates (or, 
alternatively, voxel activity space), and can be 
recovered by estimating the distances between the 
responses in this space (Figure 2). An important 
property of this geometry is dimensionality. High-
dimensional representation of task-relevant variables 
can support flexibility by enabling linear readouts of 
multiple, different conjunctions of task variables from 
the same representation (Fusi, Rigotti & Miller, 2016), 
providing a basis set for implementing rapid transitions 
between different task states. Indeed, in highly trained 
macaques, PFC representations of task variables 
approach maximum dimensionality, and this property 
predicts success on the task (Rigotti et al., 2013).  

In contrast, macaque PFC neurons also 
simultaneously encode abstract task variables and 
categories (Bernardi et al, 2018). Similarly, in humans, 
a large body of research has linked PFC with abstract 
task representations that can be readily generalized 
and transferred to novel task settings. But, these 
abstract representations would be predicted to have low 
dimensionality. Therefore, to understand human PFC 
representations it is important to empirically estimate 
the dimensionality of these representations directly in 
humans, using non-invasive methods like fMRI. 

Existing methods of estimating representational 
dimensionality with fMRI rely on the analysis of multi-
voxel BOLD patterns (Diedrichsen et al., 2013; Ahlheilm 
et al., 2018). We have previously shown that multi-voxel 
BOLD patterns in the PFC have relatively low reliability 
(Bhandari et al., 2018), and it is difficult to decode their 
information content.  This is an obstacle to the 
application of MVPA-based methods for estimating 
representational geometry of PFC. fMRI adaptation 
circumvents this problem by leveraging the 
phenomenon of repetition suppression to estimate the 
geometry and dimensionality (Rigotti et al., 2016). Here 
our aim is to implement both these approaches for 
estimating representational geometry in a single 
experiment and evaluate their reliability for estimating 
representational geometry.  

 

Methods 

Subjects 

24 right-handed subjects (ages 18-30, 17 females) with 
no reported neurological or psychological disorders 
were recruited for an initial behavioral training session. 
Four of these subjects returned for an additional 
behavioral training session followed by 5 fMRI 

sessions, each on separate days. All subjects gave 
informed, written consent as approved by the Human 
Research Protections Office at Brown University, and 
were compensated for their participation.  

Experiment Design 

Experimental task Subjects performed a 
discrimination task based on a 3-dimension parity 
problem as described in Figure 1. Solving a parity 
problem requires a high-dimensional, conjunctive 
representation of the stimulus variables in at least one 
brain region.  

  

Figure 1 Experimental task. Stimuli consisted of 3-
dimensions – a face (male/female), a scene 
(indoor/outdoor), and an auditory tone (low/high 
pitch). Graphic in left panel summarizes the task 
contingencies which implemented a parity problem 
(XOR in 3-dimensions). The 23 task conditions were 
mapped onto two categories (shown by red and 
blue circles). Right panel shows two example trials 
and timings employed. 

 
Training Subjects were explicitly instructed on the 
categorization rule and then trained to perform the 
behavioral task (~700 trials with feedback). Subjects 
that achieved > 90% terminal accuracy in session 1 
went through a second round of training on a separate 
day (~700 trials with feedback). These participants then 
returned for five additional fMRI sessions. Before being 
scanned, the subjects received refresher training (270 
trials with feedback, 90 trials without feedback).  
fMRI Whole-brain imaging was performed using a 
Siemens 3T Prisma MRI system. In each scanning 
session, we acquired 1) a high-resolution T1 weighted 
3D MPRAGE image 2) 5-10 runs (185 volumes/run) of 
functional data while subject performed the task using 
a gradient-echo, echo-planar (EPI) pulse sequence 
(TR=2s, TE=30ms, 32 axial slices, 3x3x3 mm) 3) 1 run 
(124 volumes) of resting functional data was acquired 
(TR=3 s, TE=30 ms, FA=85°, 3 x 3 x 3-mm voxels, 
FOV=216, 47 axial slices, no skip, no dummy slices). In 
addition, 6 runs (150 volumes/run) of function data were 
acquired while subjects observed face and place stimuli 
in a block design for localizing face-sensitive voxels.   
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Trial sequence design For the functional task runs, 50 
Type-1-Index-1 stimulus sequences with 2nd order 
counterbalancing were generated using methods 
described by Aguirre (2007). These sequences ensure 
each task condition is preceded by every other task 
condition (and a null), and each possible pair of task 
conditions is preceded by every task condition allowing 
the separate estimation of the BOLD response to each 
condition, as well as the 8x8 matrix of repetition 
suppression effects. In total, we collected more than 45 
runs of data, each of which provided 1 sample of the 64 
pair-wise repetition suppression effects, and 80 
samples of the task condition patterns.  
Regions-of-interest Two ROIs were selected prior to 
analyses: i) Fusiform face area (ffa) ii) the dorsolateral 
PFC. The ffa was defined as the face-sensitive voxels 
identified by a face vs place contrast obtained within an 
anatomically defined fusiform gyrus. The dlPFC ROI 
was defined as the task activity in each subject 
identified by an All task trials v/s implicit baseline 
contrast obtained within the multiple-demand dlPFC 
regions (Fedorenko, Duncan & Kanwisher, 2013). 

fMRI Analysis 

Preprocessing and general linear modelling: After 
standard preprocessing of the functional data in SPM 
(slice timing correction, registration, normalization and 
smoothing for the RS model) we fit general linear 
models to estimate a) the multi-voxel patterns 

associated with the 8 conditions in every separate run 
and b) an 8 x 8 matrix of repetition-suppression effects. 
Representational distance estimation 
Correlation distance (1-r) was employed as the metric 
for estimating pair-wise representational distances 
between task condition using multi-voxel patterns 
(Kriegeskorte, Mur, Bandettini, 2008). With adaptation, 
the repeat vs non-repeat trial contrast for a pair of task 
conditions was employed as a distance metric. We 
assume both repetition suppression and enhancement 
effects reflect representational overlap. Distance 
matrices were constructed for each run. For adaptation, 
error trials are treated as missing values.  
Reliability estimation 
For both pattern-based and adaptation-based 
distances, split-half reliabilities of the representational 
geometry recovered from n trials was estimated by 
sampling 2n single-trial estimates of task condition 
patterns or repetition suppression effects and 
computing the rank correlation between 1000 random 
half-splits of these estimates. Thus, the reliabilities 
reflect the reproducibility of the rank order of distances.  
 

Results 

In Figure 3, split-half reliabilities of distance estimates 
for adaptation-based and pattern-based distances in 
both dorsolateral PFC and fusiform visual cortex are 
plotted as a function of the number of trials employed to 
obtain distance estimates. We observed a significant 
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Figure 2: Overview of pattern analysis & adaptation approaches to recovering representational geometry. 
Pattern analysis relies on biased sampling of underlying neural population by different voxels, thus 
preserving the underlying similarity structure in multi-voxel activity patterns. Adaptation relies on repetition 
suppression operating at the level of individual neurons, with effects reflecting representational overlap 
summed at the level of the voxel. Both methods can be employed to obtain representational distances 
which are summarized in a pattern dissimilarity or RS-based dissimilarity matrix. Dimensionality is 
equivalent to the true rank of the dissimilarity matrix.  
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region-by-method interaction with reliabilities being 
significantly higher in dlPFC, but not in visual cortex.  

Note that for n conditions, fMRI adaptation requires n 
times more samples than a pattern-based approach for 
estimating a full representational dissimilarity matrix. 
Therefore, for a fair comparison, we also plot the 
pattern-based estimate from dlPFC obtained with 23x8 
= 184 trials. This value is comparable to the adaptation 
 

 

Figure 3 Split-half reliabilities (Spearman rank 
correlation) for adaptation-based (black) and 
pattern-based (red) distances in dorsolateral PFC 
(solid lines) and fusiform visual cortex (dashed 
lines) as a function of the amount of data used to 
estimate distances. 

-based estimates for 23 trials (the maximum possible 
given our method). In other words, after controlling for 
the different amounts of scanning time required by the 
two methods, the adaptation-based methods still 
outperformed the pattern-based method in dlPFC.  

 In summary, our result demonstrates that fMRI 
adaptation may be a more reliable method for 
recovering the geometry of representations in lateral 
PFC. We note that this same property may hold for 
other regions of the brain not tested here. In the future, 
we will employ this approach to empirically estimate the 
dimensionality of human PFC representations.   
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