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Abstract
Many neural systems display cascading behavior char-
acterized by uninterrupted sequences of neuronal firing.
When the distributions of cascade size and duration fol-
low a power law, theoretical models suggest that such
dynamics support optimal information transmission and
storage. However, the unknown role of network struc-
ture on neural dynamics precludes an understanding of
how variations in network structure either support or im-
pinge upon information processing. Here, we develop a
theoretical understanding of how network structure sup-
ports information processing through network dynamics
and validate our theory with empirical data. Using a gen-
eralized spiking model and mathematical intuitions from
linear systems theory, network control theory, and infor-
mation theory, we show how network structure can be de-
signed to temporally extend the propagation and recov-
ery of certain stimulus patterns. Moreover, we observe
cycles as structural and dynamic motifs that are preva-
lent in such networks. Broadly, our results demonstrate
how network structure constrains cascading dynamics
and supports persistent activation that could potentially
contribute to cognitive faculties, such as working mem-
ory or attention.
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In many neural systems, neurons display spontaneous cas-
cades of activity, in which neurons spike in patterns across
consecutive time windows. These cascades often form heavy-
tailed distributions of size and duration. When such dis-
tributions follow a power law, those cascades are called
avalanches and have been linked to optimal information pro-
cessing in critical systems (Beggs & Plenz, 2003; Kinouchi
& Copelli, 2006). However, often left implicit in the analy-
sis of this phenomenon are (i) the computational function of
avalanches without the assumption of self-organized criticality
(Priesemann et al., 2014; Touboul & Destexhe, 2017) and (ii)
the network structure that supports various cascading dynam-
ics (Perin, Berger, & Markram, 2011; Brunel, 2016). Thus, it is

not yet clear how network structures shape cascading dynam-
ics, which in turn perform computations (Larremore, Shew, &
Restrepo, 2011; Chambers & MacLean, 2016).

Here, we address this gap in knowledge through a series
of analyses and numerical simulations of a stochastic neural
network model instantiated upon various network structures.
Using linear systems theory, network control theory, and in-
formation theory, we demonstrate that network structure con-
strains cascade duration, identify topological features that ex-
tend cascade duration, and show that long cascade duration
allows recovery of stimuli. Importantly, we empirically vali-
date these theoretical results with multielectrode array (MEA)
recordings from neurons in the mouse somatosensory cor-
tex (Ito et al., 2016). Collectively, our findings show that the
network topology reported extensively in the empirical litera-
ture supports the persistent activation of a cluster of neurons,
which in turn allows for the recovery of stimulus patterns impli-
cated in working memory (Durstewitz, Seamans, & Sejnowski,
2000; Eriksson, Vogel, Lansner, Bergström, & Nyberg, 2015).

Network structure constrains cascade duration

To investigate the role of network structure, we first formalize
a network as a directed graph of nodes V = {1, . . . ,n} and
edges E ⊆V ×V , and we represent this graph as a weighted
adjacency matrix A = [ai j] (Figure 1a). We model the activ-
ity of an n-neuron network as a binary vector y(t) ∈ {0,1}n

that evolves stochastically as yi(t) ∼ B(ai · y(t − 1)), where
B(p) is a Bernoulli process with probability min(0,max(1, p)).
The average state of the stochastic model can be written as
E[y(t)] = x(t), and given equal initial states x(0) = y(0) and
∀i ∈ V : ∑ j ai j ≤ 1, this average neural activity evolves as a
linear system x(t) = Ax(t−1) (Ju, Kim, & Bassett, 2019).

From this formulation, we can analytically represent any
pattern of neural activity y(t) at time t as a state si ∈ {0,1}n.
Then, we can write the evolution of activity as a Markov
process, where the probability that the network is in any
state is given by the probability vector p(t) = [P(y(t) =
s1); . . . ;P(y(t) = s2n

)]. As a Markov process, we can write the
evolution of this probability vector as a linear map according
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to a transition matrix T such that p(t) = T p(t−1) = T tp(0).
Then, the fraction of cascades that terminate by time t is sim-
ply given by the first entry of p(t) where s1 = 0 (Figure 1b).
Because the transition matrix is an explicit and deterministic
function of the network T = f (A) (Ju et al., 2019), the cascade
duration is analytically constrained by the network A.
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Figure 1: Network structure constrain cascade duration.
a, An example of a network adjacency matrix. b, The estima-
tion of the fraction of neurons alive at time t in simulations of
the network in panel a.

As a more general and tractable description, we then nu-
merically demonstrated the role of network structure on cas-
cade duration by using eigenvalue analysis. Because the av-
erage of the stochastic model E[y(t)] = x(t) evolves linearly
as x(t) = Ax(t−1), we used the dominant eigenvalue of the
network matrix λ1 = maxλi∈eig(A) |λi| to predict the distribu-
tion of cascade duration. We fitted such a distribution using
maximum likelihood estimation (MLE) as a truncated power
law p(x) ∼ x−αe−x/τ with parameters α, the log-log slope of
the power law, and τ, the scale of the exponential truncation
(Clauset, Shalizi, & Newman, 2009; Alstott, Bullmore, & Plenz,
2014). To avoid overgeneralizing, we bounded τ by the max
cascade duration and denoted this new value as τ′. In sim-
ulations of cascades on 192 networks of 28 nodes, the pa-
rameters α and τ′ were monotonically and linearly correlated
with λ1, as reflected in a Spearman’s ρ of 0.97 (p≈ 0) and a
Pearson’s r of 0.99 (p = 3.9×10−31; λ1 > 0.8), respectively
(Figure 2a,b).

To empirically validate this theory, we used λ1 to predict
cascade duration in 25 multielectrode (MEA) recordings of
spiking neurons in the mouse somatosensory cortex (Ito et al.,
2016). To measure λ1, we derived directed networks from the
recordings using vector autoregression (Neumaier & Schnei-
der, 2001; Schneider & Neumaier, 2001). Then, we binned
the spikes with 2ms bins, identified cascades of consecutively
active bins, and fitted distributions of cascade duration to trun-
cated power laws. In these recordings, the parameters α and
τ′ are monotonically and linearly correlated with λ1, as re-
flected in a Spearman’s ρ of 0.78 (p = 7.4×10−6) and Pear-
son’s r of 0.62 (p = 9.9× 10−4), respectively (Figure 2c,d).
Moreover, in simulations of cascades on these empirical net-
works, we find a significant positive correlation between τ′ and
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Figure 2: Eigenvalue analysis captures distributions of
cascade duration. The dominant eigenvalue of a network
monotonically scales both parameters τ′ (a, c) and α (b, d).
a-b, This relation holds in simulations of the stochastic model
on synthetic (red) and empirically derived (blue) networks. c-
d, We validate these relations in spiking neurons from MEA
recordings.

λ1, with a Spearman’s ρ of 0.93 (p= 1.7×10−6; Figure 2a,b).

Cyclical network topology extends cascades

Previous empirical studies have found cycles in the topology
of cortical connectivity (Wang et al., 2006; Ko et al., 2011).
Here, we hypothesized that these cycles allow networks to dis-
play heavy-tailed distributions of cascade duration. To test this
hypothesis, we simulated cascades in networks with varying
degrees of cycle density, defined as the number of simple cy-
cles divided by the number of edges. We found that as cycle
density increases with edge rewiring, cascade duration also
increases with a Pearson’s correlation coefficient of r = 0.82
(p = 1.1×10−27; Figure 3a).

Depending on the extent of refractoriness, these cycles,
even if they exist structurally, may not support cyclical prop-
agation of activity. Thus, to ensure that activity can propagate
through cycles in neuronal systems, we measured the number
of n-cycles in the MEA data, where an n-cycle occurs when a
neuron spikes again after n time bins of its previous spike. We
found that 1-, 2-, 3-, and 4-cycles occur an average of 1.9
times per cascade, with an average of 2.7× 105± 1.6× 104

cascades per recording (standard error; Figure 3b).
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Figure 3: Cyclical network topology extends cascades. a,
Increasing cycle density through rewiring edges extends cas-
cade duration. b, In MEA recordings, spikes propagate fre-
quently through cycles.

Highly controllable neurons extend cascades
Even within a single network, the duration of cascades can
vary depending on the nodes that are stimulated, either spon-
taneously or exogenously. Recently, studies have used net-
work control theory to determine the capacity of a node in
controlling the state of a network (Yan et al., 2017). In par-
ticular, one metric called average controllability measures the
impulse response of a node (Pasqualetti, Zampieri, & Bullo,
2014), and thus, we hypothesized that it can predict cascade
duration.

To test this hypothesis, we simulated cascades on 100-
node random networks by stimulating individual nodes. We
observed that the mean cascade duration and finite average
controllability (a finite version of average controllability) were
significantly positively correlated with a Pearson’s correlation
coefficient of r = 0.93 (p = 1.0× 10−43; Figure 4a). In ex-
panded simulations of 30 random instantiations of the net-
work, we observed consistent effects with a median Pearson’s
correlation coefficient of r = 0.90.
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Figure 4: Stimulation in neurons with high controllability
extends cascade duration. a, Finite average controllability
of a stimulated neuron is highly correlated with mean duration
of the resulting cascades. b, In MEA recordings, controllability
of neurons in the first T time bins predicts cascade duration.

To empirically validate this theory, we tested these predic-

tions in the same MEA recordings used previously. We find
that cascade duration is correlated with mean average control-
lability of active neurons in the initial T states with an average
Spearman’s ρ of 0.16 for T = 1 and 0.24 for T = 2 (p< 0.001,
Bonferroni-corrected; Figure 4b). Considering that the cas-
cades are stochastic and cannot be predicted deterministi-
cally, we find it notable to observe any correlation between
controllability and cascade duration in empirical data. These
results suggest that stimulus patterns must be tailored for a
network to produce the desired neural dynamics and lead to
the question of how stimulation, either endogenous or exoge-
nous, can be used for information processing.

Lasting cascades allow information recovery
If certain networks and stimulus patterns can produce long-
lasting cascades, how can these long-lasting cascades con-
tribute to information processing? Intuitively, one cannot re-
cover information about stimuli from cascades that have al-
ready terminated, but for lasting cascades, network states can
be discriminated and provide information about stimuli. Such
delayed recovery of stimuli can allow the associative learn-
ing of stimuli across temporal delays (Durstewitz et al., 2000;
Eriksson et al., 2015).

To test this intuition, we first show in our Markov formula-
tion that lasting cascades allow information recovery. We de-
fine stimulus recoverability as the mutual information I(S;Yt)
between initial states y(0) ∈ S and states y(t) ∈ Yt at time
t. Given two initial states yi(0) and y j(0), the probability
vectors of the two cascades evolve as pi(t) = T tyi(0) and
p j(t) = T ty j(0). For quickly decaying systems, pi(t) and
p j(t) will both have high probabilities of the zero state s1, in-
herently reducing recoverability.

To numerically demonstrate this relationship, we simulated
cascades on four types of networks (weighted random, ran-
dom geometric, modular, Watts-Strogatz) and measured the
mutual information I(S;Yt) at each t and cascade duration.
Consistent with our intuition, we observe that mutual informa-
tion is maintained longer when cascades last longer on av-
erage. To quantify the relationship between cascade dura-
tion and the decay in mutual information, we calculated the
Pearson’s correlation between average cascade duration and
the slope of the linear regression between mutual information
and time (Figure 5a). For all network types, we found mean
correlation coefficients greater than 0.9 (Figure 5b). Collec-
tively, these findings demonstrate the interplay among network
structure, dynamics, and information processing.

Conclusion
Neural systems display cascading dynamics that harbor the
marks of a complex underlying network structure and sup-
port diverse range of computations (Beggs & Plenz, 2003; Ki-
nouchi & Copelli, 2006). Yet, precisely how network structure
supports computations through cascading dynamics remains
unclear. Here, using the rich mathematical properties of lin-
ear systems, we describe how network structure and stimulus
patterns together determine the manner in which a stimulus
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Figure 5: Lasting cascade allow stimulus recovery. a, In
an example network, mean duration of a stimulus pattern is
correlated with the rate of decay in mutual information (MI)
between the stimulus pattern y(0) and a later network state
y(t). b, The mean correlation between MI decay rate and
mean duration is above 0.9 in simulations of four graph types
(WR: weighted random; RG: random geometric; M4C: modu-
lar with 4 communities; WS: Watts-Strogatz, small world).

propagates through the network. We then demonstrate that
long-lasting cascades can allow for temporally delayed recov-
ery of desired patterns of stimulation. Importantly, we validate
these results in empirical data. Broadly, our work blends dy-
namical systems theory, network control theory, information
theory, and computational neuroscience to address the wide
gap in the field’s current understanding of the relations be-
tween architecture, dynamics, and computation.
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