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Abstract: 

We all have experienced that the amount of effort 
required to perform a task can rapidly decrease over the 
course of practice. Previous studies have shown that 
short-term automatization of stimulus-response 
transformations is associated with a reorganization of 
functional coupling between different large-scale brain 
networks. However, it has remained an open question 
how changing connectivity patterns translate into more 
efficient stimulus-response processing over the course 
of learning. Here, we employed a control-theoretic 
approach to test the hypothesis that the amount of 
control energy required for stimulus-response 
processing decreases from early to late practice for 
networks involved in task control. Using fMRI data from 
a learning group, N = 70, and a control group, N = 67, 
stimulus-response transformations were modeled as 
trajectories of activity starting in the visual network and 
ending in the sensorimotor network. The stimulus-
response trajectories were determined by the functional 
connectivity matrices derived from the fMRI data plus 
additional control activation exerted by task-related 
networks. Based on this analysis approach, we found 
that the cingulo-opercular network can control 
stimulus-response transformations with increasing 
efficiency over the course of learning, while no change 
in control energy was observed for the fronto-parietal 
network, highlighting the central role of the cingulo-
opercular network for short-term task automatization.  

Keywords: control theory; fMRI; instruction-based 
learning; cingulo-opercular network 

Introduction 

Transforming novel stimuli into appropriate motor 
responses typically requires substantial effort at the 
beginning of practice. However, already within the first 
few practice trials, the human brain starts to perform 

stimulus-response transformations with increasing 
efficiency, as indicated by decreasing reaction times 
(Ruge and Wolfensteller, 2010; Ruge et al., 2017). 
Recent neuroimaging studies have shown that these 
gains in efficiency are enabled by a reorganization of 
functional connectivity among several large-scale brain 
networks (Mohr et al., 2016, 2018). Particularly, it was 
shown that practicing stimulus-response 
transformations is associated with increasing 
functional connectivity between the cingulo-opercular 
network (CON) and other large-scale networks, most 
prominently the dorsal attention network (DAN) and 
visual network. This functional integration is 
accompanied by decreasing activation within the 
fronto-parietal network (FPN). These findings suggest 
that stimuli are transformed into motor responses more 
directly via the DAN and CON over the course of 
practice, thereby reducing the need for high-level 
cognitive control provided by the FPN.   

However, until now it has remained unclear how the 
observed reorganization of large-scale functional 
connectivity contributes to more efficient stimulus-
response processing. We address this open question 
by applying a recently proposed control-theoretical 
analysis approach (Gu et al., 2015, 2017) to functional 
connectivity data from a learning group and a control 
group (Mohr et al., 2016). This analysis approach 
assumes that the brain can be modeled as a 
dynamical system (Breakspear, 2017) whose state 
trajectories evolve not only according to its intrinsic 
dynamics but also as a function of additional control 
inputs (see Figure 1). Using this model allows us to 
compute the control energy required by each network 
to transform visual stimuli into motor responses, given 
the current intrinsic dynamics of the brain. We 
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hypothesized that if a network becomes increasingly 
efficient in transforming stimuli into responses, this 
should be reflected by a corresponding decrease in 
control energy required by the network over the course 
of learning.  

 

Figure 1: Control-theoretical analysis approach. 
Initially, stimuli are represented within visual cortex. To 
transform the stimuli into appropriate motor responses, 
a certain amount of control energy is required (right 
trajectory). We hypothesized that the amount of 
required control energy might decrease for certain 
large-scale brain networks over the course of learning, 
reflecting more efficient stimulus-response processing 
through these networks. Figure reproduced from 
Betzel et al., 2016 with slight modifications.   

 

Methods 

First, we briefly describe the experimental tasks, data 
collection and how the connectivity matrices were 
constructed from fMRI time series. For more details on 
these points, see Mohr et al., 2016. Then we describe 
how the connectivity matrices were analyzed using the 
control-theoretical analysis approach presented in Gu 
et al., 2015, 2017.  

Experimental tasks Subjects either performed an 
instruction-based learning task (learning group, N= 70) 
or a 1-back working memory task (control group, N= 
67). In the learning task, subjects were instructed at 
the beginning of a new block how to respond to four 
novel stimuli (left or right index finger), see Figure 2. 
The instruction phase was followed by a sequence of 
trials in which the subjects had to respond to the 
presented stimuli as instructed. In the control task, the 
subjects were presented with the same stimulus 
material but instead of implementing fixed stimulus-
response rules they performed a 1-back task, i.e. they 

had to indicate whether the preceding stimulus was 
identical to currently displayed stimulus in each trial.  
 

 
Figure 2: Instruction screen (a) and sequence of trials 
(b) in the learning task and control task. Figure 
reproduced from Mohr et al., 2016.  
 

Data collection and processing pipeline For each 
subject, fMRI data from 20 task blocks were collected 
using a 3T scanner with TR = 2 s. Each task block had 
a length of approximately 90 s (at least 32 trials, 
depending on errors). The raw fMRI data were 
preprocessed using a standard pipeline in SPM8. A 
general linear model was estimated to remove task-
related activity at the single-subject level. Residual 
time series were extracted from 222 regions of 
interested using the MNI coordinates published in 
Power et al., 2011. For each task block, the time 
series were cut into three equidistant parts, with the 
first part representing the early learning phase and 
third part representing the late learning phase. 
Pearson correlation values were calculated separately 
for early and late learning for all pairs of regions, 
resulting in 222 x 222 connectivity matrices for the two 
learning phases. The 222 regions were assigned to 
the 10 large-scale functional networks reported in Cole 
et al., 2013. The set of networks consisted of the 
default-mode network (DMN), fronto-parietal network 
(FPN), sensorimotor network (SMN), visual network, 
subcortical network, cingulo-opercular network (CON), 
salience network (SAN), ventral- and dorsal attention 
networks (VAN and DAN) and auditory network. Using 
this assignment, mean values for between- and within-
network connectivity were calculated for all network 
pairs, resulting in connectivity matrices 𝐴𝑒𝑎𝑟𝑙𝑦, 𝐴𝑙𝑎𝑡𝑒 of 

size 10 x 10 that were subsequently used in the 
control-theory based analysis.  

Control theory In the control-theoretical framework 
proposed by Gu et al., 2015, 2017, brain activation 
states 𝑥 evolve according to the following differential 
equation: 

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

where the vector 𝑥(𝑡) represents the state of neural 
activation at time 𝑡, matrix 𝐴 describes the intrinsic 

dynamics of the system, matrix 𝐵 defines the control 

set, and vector 𝑢(𝑡) provides the control input at time 
𝑡. Here, we modeled neural activations at the network 
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Figure 3: Control energy required by networks of the 
control set for the early and late learning conditions 
and the respective control conditions. The black lines 
represent confidence intervals. Abbreviations: FPN: 
fronto-parietal network; CON: cingulo-opercular 
network; SAN: saliency network; VAN: ventral 
attention network; DAN: dorsal attention network. 
 
level, i.e. 𝑥(𝑡) was a 10-dimensional vector. 

We assumed that stimulus-response transformations 
started in the visual network and ended in the SMN, 
hence we defined  

𝑥(0) = 𝑒𝑉𝑖𝑠𝑢𝑎𝑙  and  𝑥(𝑇) = 𝑒𝑆𝑀𝑁, 

that is, activation within the visual network was set to 1 
and activation within all other networks to 0 at time 
𝑡 = 0, whereas at time 𝑡 = 𝑇, only the SMN was set to 
1 and all other networks set to 0. The control set 
consisted of all task-related networks except the visual 
network and SMN, since they were defined as start 
and target networks. The DMN was also excluded 
from the control set, as the DMN’s decoupling from 
task-related networks over the course of learning 
indicates that the DMN is not involved in stimulus-
response processing (Mohr et al., 2016, 2018).  

As proposed in Gu et al., 2015, 2017, we optimized 
the control input 𝑢(𝑡) required to get from the initial 

state 𝑥(0) to the target state 𝑥(𝑇) by minimizing the 
control energy 𝐸𝑢: 

𝐸𝑢 = ∫ |𝑥(𝑡) − 𝑥(𝑇)|2
𝑇

0

+ 𝜌|𝑢(𝑡)|2𝑑𝑡 

Following Betzel et al., 2016, we set 𝜌 = 100 and 

𝑇 = 1. For each subject, the minimal control energy 
required to traverse from the initial state to the target 
state was estimated for the early and late conditions, 

using the connectivity matrices 𝐴𝑒𝑎𝑟𝑙𝑦, 𝐴𝑙𝑎𝑡𝑒 

respectively.  

Statistics As we were interested in learning-related 
effects, we tested for the interaction effect ‘group’ × 
‘learning phase’ for each network of the control set. 
That is, we calculated for each subject the difference 
between the amount of control energy required for 
stimulus-response processing during the early and late 
practice phase, and compared these changes from 
early to late practice across groups. Before being 
submitted to statistical tests, control energy values 
were log-transformed, resulting in normally distributed 
values. As the control set contained 7 networks, we 
corrected the resulting p-values for 7 tests using 
Bonferroni-correction.  

Results 

 
The results are shown in Figure 3 and Table 1. After 
correcting for multiple comparisons, only the CON 
showed a significant interaction effect group (learning 
vs. control) × learning phase (late vs. early). In this 
network, the amount of control energy required for 
transforming stimuli into responses decreased from 
early to late learning in the learning group but slightly 
increased in the control group. At the uncorrected 
level, the VAN showed an interaction effect in the 
opposite direction (t = 2.2, p = 0.028 uncorrected). 
There was no significant interaction effect found for the 
other networks, in particular for the FPN there was no 
significant interaction effect at the uncorrected level (t 
= 0.5, p = 0.61 uncorrected). Moreover, since the 
control-theoretical analyses were conducted at the 
network level, numerical instabilities as discussed in 
Tu et al., 2018 and Pasqualetti et al., 2019 did not 
occur.  
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Table 1: Statistical results for the interaction effect 
group (learning vs. control) × learning phase (late vs. 
early). P-values were Bonferroni-corrected for 7 tests.  

 

Discussion 

Our results show that gains in efficiency observed 
across the first few practice trials can be primarily 
attributed to more efficient control of stimulus-
response processing by the CON. This finding 
corroborates the notion that the reorganization of 
large-scale functional connectivity is centered around 
the CON as the main catalyst of short-term task 
automatization (Mohr et al., 2016, 2018).   

The presented findings also shed light on the question 
whether the FPN’s activation decrease indicates that 
stimulus-response processing is more efficiently 
controlled by the FPN, or alternatively, that less 
cognitive control is required by the FPN over the 
course of learning. Since no significant reduction in 
control energy was found for the FPN, our results 
speak for the latter case.  

From a more general perspective, our results show 
that the control-theoretic analysis approach proposed 
by Gu et al., 2015, 2017 can be employed to uncover 
interesting relationships between large-scale 
connectivity patterns and control costs that would 
remain undiscovered without this analysis framework.  
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Network T-value P-value 

FPN 0.5 1 

Subcortical 1.5 0.99 

CON -3.2 0.013 

SAN 1.5 1 

VAN 2.2 0.20 

DAN -1.2 1 

Auditory 0.8 1 
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