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Abstract
Understanding human gaze, and the saccadic selec-
tion process underlying it, is an important question in
cognitive-neuroscience with many interesting applica-
tions in areas from psychology to computer vision. One
way to advance our understanding is to develop gen-
erative models that capture the spatial interaction be-
tween fixations and the temporal structure of a sequence
of fixations, known as scanpaths. Such models are
scarce in the literature and even fewer attempt to model
inter-subject variability. In this work, we present a new
parametric model for scanpath generation. We develop
a discrete-time probabilistic generative model, with a
Markovian structure, where at each step the next fixation
location is selected using one of two strategies - exploita-
tion or exploration. We implement efficient Bayesian
inference for hyperparameter estimation using an HMC
within Gibbs approach. Our model is able to capture inter-
observer variability in terms of saccade length and direc-
tion as demonstrated by fitting the model to a dataset
of scanpaths from 35 subjects performing a task of free
viewing of 30 natural scene image.

Keywords: generative model, eye movement, attention,
bayesian inference, scanpath generation

Introduction
In an attempt to understand the underlying cognitive mecha-
nisms of human vision, much work has been done trying to
answer the question - what do human observers look at in
an image? To answer this question many saliency models
were developed (Itti & Koch, 2001; Kümmerer, Wallis, Gatys,
& Bethge, 2017), which generate fixation density estimates
which predict the density of human fixations in an image.

Not only is it important to quantify where human observers
look in an image, but it is also important to quantify how they
look at an image. Rapid eye movements are performed be-
tween two fixation points; these movements are referred to as

saccades. A sequence of saccades is called a scanpath. Un-
derstanding how human observers look at an image requires
quantifying scanpaths.

Several models for scanpath generation and prediction
were developed in recent years. Earlier models rely on cog-
nitive and neural assumptions regarding human perception
(Le Meur & Liu, 2015; Engbert, Trukenbrod, Barthelmé, &
Wichmann, 2015) and with the rise of machine learning, and
deep learning in particular, several models have been devel-
oped which employ state of the art deep learning techniques
(Shao et al., 2017; Kmmerer, Wallis, & Bethge, 2018). While
these models are very successful in capturing the properties
of scanpaths across a lare group of human observers, they re-
quire a lot of data for training and cannot be fitted for individual
observers.

In this work we present a stochastic generative model which
generates a scanpath given a saliency map. As the model is
relatively simple and includes only very few parameters, we
can fit it to data from individual experimental subjects and cap-
ture inter-subject variability.

Next we describe the model in details, the assumptions be-
hind it and the inference procedure used to fit it to experimen-
tal data. Then we present the result of the fitted model on test
data and conclude by discussing the limitations of the model
and future research directions.

Methods

Exploration-Exploitation Model

Our model is Markovian and we assume that conditioned on
the current fixation location the next fixation location, is inde-
pendent of the rest of the scanpath. The novelty of our work
is that we use the well known concept of exploration and ex-
ploitation to generate the next fixation. We use this concept
to characterize the spatial properties of saccades generation.
This approach is motivated by previous research that used the
Exploration-Exploitation framework to characterize the tempo-
ral structure of saccade generation (Gameiro, Kaspar, König,
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Nordholt, & König, 2017).
Since our main focus is on modeling the dynamics of the

saccade generation mechanism, we assume that we have a
”good enough” model for saliency maps generation. In prac-
tice, for each image we use the empirical saliency over all the
participants similarly to (Schütt et al., 2017). A saliency map
is nothing but a function µ(z) : R2 7→ R+ with z = (x,y) being
a location in an image and µ(z) the probability of an average
viewer to fixate on this location. From now on we will use µ(z)
to refer to the saliency of the image in z.

Generally, scanpaths are sequences of fixation locations
and duration. In this work we model only the spatial proper-
ties of gaze control and do not model the temporal dimension.
Thus, a scanpath can be written as Z = {z1,z2, ...,zt , ...,zT}
with T the number of fixations in the scanpath and zt the loca-
tion of the tth fixation.

In our model, for every time t given the current fixation loca-
tion zt−1 the next fixation zt is generated following one of two
policies:

Exploitation Given that the current fixation location is ”inter-
esting enough” (e.g. the value of µ(zt−1) is high) the ”viewer”
assumes that there are further interesting locations near by
and the next fixation is generated as a small brownian step
around the current location with variance ε. This is written as:

p(zt |zt−1) = n(zt ;zt−1,ε) (1)

where n(zt ;zt−1,ε) is a Gaussian density with mean zt−1 and
variance ε.

Exploration On the other hand, the viewer may decide that
the current fixation location is not interesting enough. In this
case the viewer would chose randomly the next fixation ac-
cording to the saliency map. This policy may lead to very
large saccade amplitudes which are known to be less prob-
able (Tatler, Baddeley, & Vincent, 2006). To encapsulate this
prior knowledge we perform a point-wise multiplication of the
saliency map with a Gaussian distribution. This multiplication
does not necessarily result in a valid density and it requires
normalization, leading to the following expression:

p(zt |zt−1) =
µ(zt)n(zt ;zt−1,ξ)

∑z′ µ(z′)n(z′;zt−1,ξ)
. (2)

Figure 1 visualizes the two distributions formulated in Equa-
tions 1 and 2.

At each step the choice of the strategy is made by sampling
from a Bernouli distribution, written as:

p(zt |zt−1) = (n(zt ;zt−1,ε))
γt

(
µ(zt)n(zt ;zt−1,ξ)

∑z′ µ(z′)n(z′;zt−1,ξ)

)1−γt

(3)

p(γt) = Bern(γt ;ρ) . (4)

Our next assumption is that the decision whether to make
an exploration or an exploitation step depends on the saliency
value of the current fixated location. The result is that the

Figure 1: On the left is an example for a saliency map (brighter
colors represent areas of higher interest) and a fixation loca-
tion. On the right are the two distributions from which the next
fixation location may be drawn according to the two different
policies. The upper tile corresponds to the Exploitation policy
and to Equation 1. The lower tile corresponds to the Explo-
ration policy and to Equation 2.

viewer is more likely to make a small exploitation step if the
current fixated location is already of high interest. We capture
this in the model by allowing the bias of the parameter γt to be
dependent on the saliency in zt−1, specifically:

p(γt |zt−1) = Bern(γt ;ρt−1) (5)

ρt−1 = σ(µ(zt−1)) =
1

1+ exp(−b(µ(zt−1)−µ0))
.

(6)

We chose the Sigmoidal link function to induce smoothness
and to simplify the inference process.

The generation of a scanpath in our model is sequential.
At each time step, the next fixation location is generated by
sampling γt form the Bernouli distribution in Equation 5. If
γt = 1 the next fixation location zt is sampled from the density
in Equation 1 and if γt = 0, from Equation 2. In this framework
the vector Γ = {γ1, ...,γT} can be seen as unobserved data
and we can write the likelihood of the partially observed data
as:

p(Z,Γ|Θ)≈ p(Z|Γ,Θ) p(Γ|Θ) =

p(z1)
t=T

∏
t=2

p(zt |zt−1)ρ
γt
t−1 (1−ρt−1)

(1−γt ) (7)

Θ = {b,µ0,ε,ξ} (8)

Inference
We want to have a unique generative model for each subject.
Thus we fit the model parameters Θ separately for the data
from each subject in a Bayesian framework. This approach
allows us to include prior knowledge regarding the different
model parameters based on known spatial features of scan
paths.

Naively one could chose prior distributions over the model
parameters and maximize the posterior. As the posterior of
our model cannot be maximized analytically we resort to sam-
pling. We implement a method known as MCMC within Gibbs
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sampler (Gilks & Wild, 1992) where an Hamiltonian Monte
Carlo sampler is used to sample from the conditionals of the
parameters for which there is no conjugate structure.

Results

(a) (b)

Figure 2: (a) An empirical scanpath and the corresponding
saliency map of the image that was viewed by an experimental
subject. (b) A scanpath generated from the model fitted for the
same subject. In red are fixation locations which are results
of an exploitation step and in white are fixation locations that
came after an exploration steps.

For validation of our model we used the dataset used in
(Schütt et al., 2017). This data contains 35 viewers freely ob-
serving 30 different natural images.

Figure 2 (b) presents a scanpath generated by our model
for a particular saliency map. Each dot presents a fixation lo-
cation. The initial random fixation is shown in black. Fixation
locations zt which are results of an exploitation step are shown
in red, while those from exploration are shown in white. For
comparison Figure 2 (a) presents the recorded scanpath of
a subject observing the image from which the saliency map
was produced. We present the saliency maps rather than
the original images as the saliency maps are the input to the
Exploration-Exploitation model and not the RGB images which
are observed by the subjects in the experiment.
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Figure 3: Frequency of saccade lengths (in visual degrees).
In blue is the experimental test data and in orange data gen-
erated by the fitted model.

In order to assess the model, we compare the statistical
properties of data generated by the model and empirical data
across subjects. To do so, we followed a train-test framework.
For each subject a model was fitted using data from 70% of

the images (21 images) and the comparison was made with
respect to the remaining 30% of the images (9 images) that
were not used to infer the model parameters.

First, we look at the saccade length density of the data
from all subjects, presented in Figure 3. Our model achieves
very high agreement with the experimental test data. It
seems though that the model generates more short saccades
(around 3 visual degrees) and less medium length saccades
(around 6 visual degrees) than the experimental subjects.

Not only do we compare the saccade length, but we also
compare the saccade direction. Figure 4 presents the fre-
quency of the saccade direction for the empirical data and the
data generated from our model. Our model captures the ten-
dency to perform horizontal saccades but fails to capture the
bias towards vertical saccades. This is expected considering
the Gaussian distributions that are used in the model.

right

up

left

down

Experimental data
Exploration-Exploitation 
Model data

Figure 4: Saccade direction frequency. Blue - the experimen-
tal data. Orange - data generated by the fitted model. These
results are for test data that was not used for fitting the model.

One of the main novelties of our model in comparison to
existing models is its ability to capture inter-subject variability.
To demonstrate this we compare in Figure 5 the median sac-
cade length of each subject with the median saccade length
from the data generated from a model fitted for that subject.
The blue line is the identity line. The model does not capture
perfectly the exact median saccade length for each subject
but it does capture the variability between subjects and can
potentially be used for subject identification.

Discussion & Summary
In this work we presented a new model for scanpath genera-
tion which assumes that each saccade is generated following
an exploration or exploitation policy. Not only is the model it-
self new, but our approach of Bayesian inference for fitting the
model is rarely used in the field. A notable exception is the
SceneWalk model (Schütt et al., 2017), where the Metropolis
Hastings algorithm was used to infere the model parameters.
To our knowledge there is no previous work on a model for
scanpath generation which attempted to construct a likelihood
with a conjugate structure and to use the Gibbs sampler for in-
ference. Furthermore, we successfully fit the model to exper-
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Figure 5: Comparison of the median saccade length of the
experimental test data and data generated from the model.
Each dot represents data from one subject. The blue line is
the identity line.

imental data from individual subjects viewing only 30 different
natural scenes images and capture the statistics of both the
entire population and the individual subjects.

The exploration-exploitation model focuses on the dynami-
cal aspect of a scanpath and we assume that the underlying
image saliency is known. In practice we used the experimental
saliency as the saliency input to the model. This approach is
not valid for forecasting scanpaths over new images that were
not observed by the subject. In these cases we would need to
use a computational saliency model. Many saliency models
are available and further work should be done to assess the
effect of the choice of the computational saliency model on the
performance of the exploration-exploitation model.

We presented the model performance in terms of captur-
ing the experimental distribution of saccade directions. An-
other important aspect of scanpath generation is the an-
gles between saccades. Examination of the empirical data
showed that the angle between consecutive saccades is usu-
ally small, a phenomenon known as saccadic momentum
(Smith & Henderson, 2009; Wilming, Harst, Schmidt, & König,
2013; Rothkegel, Trukenbrod, Schütt, Wichmann, & Engbert,
2016). Currently, our model is not capable of capturing this
phenomenon. This is expected since the likelihood has a
Markov structure and includes information only of the location
of the previous fixation but not the direction of the previous
saccade. This may be solved by adding memory of fixations
farther in the past to the likelihood and generating saccades
in a Polar coordinate system rather than Cartesian.

Lastly, we would like to mention that as our model is rela-
tively simple it can be used to implement different Bayesian
inference algorithms and assess their performance in terms
of computational time and accuracy. One such algorithm we
would like to evaluate is Sequential Monte Carlo (Liu & Chen,
1998) which is often used in the field of data assimilation.
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