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Abstract: 
 

The ability to generalise previously learned knowledge to 
solve novel analogous problems relies on formation of 
representations that are abstracted from sensory states. 
Little is known about how the brain generalises 
abstract representations while maintaining the content 
of individual experiences. Here we present a novel 
behavioural paradigm for investigating generalisation of 
structural knowledge in mice and report 
electrophysiological findings from single neurons in 
hippocampus and prefrontal cortex. Mice serially 
performed a set of reversal learning tasks, which shared 
the same structure (e.g., one choice port is good at a 
time), but had different physical configurations and 
hence different sensory and motor representations. 
Subjects’ performance on novel configurations improved 
with the number of configurations they had already 
learned, demonstrating generalisation of knowledge. As 
in spatial remapping experiments, many hippocampal 
neurons responded differently in different configurations 
– here tasks rather than spatial environments. In contrast, 
prefrontal representations were more general and 
reflected different stages of the trial irrespective of the 
current physical configuration. Population analyses 
showed that although the structure of each task was 
represented strongly in both regions, different 
hippocampal neuronal assemblies participated in each 
task’s representation. In contrast, neuronal patterns in 
PFC generalised between different configurations.  
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Background 
Recent progress in cognitive neuroscience has 

provided us with a formal understanding of how our 
brain learns from direct experience (Cohen et al. 2012). 
A major open challenge is to understand the broader 

class of behaviours where prior knowledge is 
generalised to solve new problems.  

 
The ability to make appropriate inferences that go far 

beyond one’s experience is thought to rely on the 
brain’s internal model of the world, termed a cognitive 
map (Tolman, 1948). Cognitive maps are well studied 
in spatial domains, where we have detailed knowledge 
of underlying cellular codes in the hippocampal 
formation (Grieves & Jeffery, 2017). Recent data from 
rodents (Aronov, Nevers & Tank, 2017) and humans 
(Constantinescu, O’Reilly & Behrens, 2016) suggests 
that the same cellular mechanisms might encode 
complex relationships that organise knowledge outside 
the spatial domain. Importantly, map-like 
representations of non-spatial models resembling grid 
codes have been recorded in human fMRI in prefrontal 
cortex (Constantinescu et al. 2016). Here we combined 
a novel behavioural paradigm in mice with silicon probe 
recordings, to investigate how hippocampus and 
prefrontal cortex represent structure knowledge to 
enable generalisation of structure learning in a non-
spatial domain. 

 

Methods 
Mice were trained to solve a probabilistic reversal-

learning paradigm where they initiated a trial by poking 
in one port, then chose between two other ports for a 
probabilistic reward (Fig 1a). Once the subjects 
consistently chose the high reward probability port, the 
reward contingencies reversed. When subjects had 
competed ten reversals on a given port configuration 
(termed a ‘task’), they were moved onto another task 
with a different port configuration (Fig 1b). All of the 
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tasks shared the same trial structure (initiate à choose) 
and a common abstract rule (one port has high and one 
low reward probability, with occasional reversals), but 
the specific location of the ports and hence the actions 
required to perform trials were different in each 
configuration. We used silicon probes to record from 
hippocampal CA1 (396 neurons, n = 4 mice) and medial 
prefrontal cortex (567 neurons, n = 4 mice).  In 
recording sessions mice typically performed at least 4 
reversals in each of 3 different configurations (Fig 2).  

 

 
 
Figure 1: Trial structure of the probabilistic reversal-

learning paradigm. a) Mice poked in an initiation port then 
chose between two choice ports for a probabilistic reward. 
Reward contingencies reversed after the animal consistently 
chose the ‘good’ port. b) Example configurations used in 
each task. Subjects completed 10 reversals on each layout 
before moving to a new poke port layout. 

 

      
Figure 2: Example of the configurations used in a single 

recording session. Mice typically completed three 
configurations each consisting of four reversals in each 
recording session. 

 

Results 

Behavioural Results 
Mice got better at tracking the good port over the 

course of each physical configuration of the task (i.e. 
fewer trials to criterion), but critically also showed 

improvement across tasks with different configurations 
(Fig 3a). Moreover, they also got better at following 
within trial structure (initiate à choose) across tasks, 
making fewer pokes to invalid ports (Fig 3b). This 
demonstrates generalisation of learning and suggests 
that mice may have developed sensory 
invariant/abstract representation of the structure of the 
task. 

 
 

 
Figure 3: Generalisation of structural knowledge in mice. 

a) Median number of trials mice took to reach the reversal 
threshold on each task configuration of a reversal-learning 
problem. b) Median number of pokes per trial mice made to 
a choice port that was no longer available because they 
already chose the other choice port.  

 

Single Unit Results 
A substantial proportion of hippocampal neurons fired 

selectively when mice entered a particular physical port 
(Fig 4a, cell 1). However, when the task configuration 
changed, the activity of many hippocampal units 
‘remapped’. Some units fired at a given port in one 
configuration but not when the same port was visited in 
a different configuration (Fig 4a, cell 2). Other units fired 
selectively to one of the choice ports in each 
configuration (Fig 4a, cell 3). Many cells had conunctive 
place x reward coding, modulating their firing to a 
particular poke port based on whether it was rewarded 
or not (Fig 4a, cell 4). In contrast, prefrontal 
representations appeared to be more invariant across 
configurations. Many cells fired selectively when one of 
the choice ports was rewarded irrespective of its 
location in all three tasks (Fig 4b, cell 1). We also found 
units that fired at the shared port in all tasks irrespective 
of whether it was rewarded or not (Fig 4b, cell 2) and 
neurons that had multiple peaks throughout the trial 
(e.g., selective for both initiation and choice states) 
irrespective of the task layout (Fig 4b, cell 1). 
Furthremore, many neurons in PFC generalised their 
complex temporal trial dynamics across tasks (Fig 4b, 
cell 4). PFC cells therefore appeared to represent task 
states irrespective of the physical locations of the ports.  
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Figure 4: Example neurons from CA1 and PFC. Upper 

panels show normalised mean firing rates aligned to choice 
port entry time. Colours indicate configuration (green, blue, 
red). Vertical dashed lines indicate initiation (grey), choice 
(black) and outcome (pink) times. CA1 cell 4, PFC cells 1,2 
and 4 were split by rewarded and non-rewarded trials. Solid 
lines indicate mean firing rates on rewarded trials, dashed 
are rates on non-rewarded trials. Lower panels show heat 
maps of normalised firing rate as a function of time within 
trial and trial number. Configurations are indicated on the 
right. a) ‘Place cell’ like firing and ‘remapping’ in 

hippocampus. Cell 1 is a spatial cell that fired at a particular 
poke across all three configurations. Cell 2 is a ‘remapping’ 
cell that only fired at the far-right port in the context of one 
of the configurations. Cell 3 fired at different choice ports in 
different configurations. Cell 4 fired for one choice port and 
continued to fire following the outcome if the choice was 
rewarded. b) Sensory invariant representations of trial 
structure in prefrontal cortex. Cell 1 was active at one of the 
choice ports when it was rewarded in all configurations. Cell 
2 fired at the shared choice port in all configurations. Cell 3 
was active at both initiation and choice ports across all 
configurations. Cell 4 fired prior to all choice ports in all 
configurations, decreased its firing at choice, and only 
increased its firing rate again if the choice was not rewarded. 

 

Population Results 
Using singular value decomposition (SVD), we asked 

whether population activity in PFC and CA1 shared the 
same low dimensional space across tasks (Fig 5a).  
  

We found that low dimensional spatio-temporal 
patterns generalised better (i.e. explained more 
variance in a task with a different configuration) in PFC 
than CA1 (Fig 5c). Next, to look at how well the structure 
of each task is represented in each region we removed 
the constraint for the temporal activity patterns to be 
paired with particular spatial activity patterns and 
looked at how well we could explain activity in a task 
using just the temporal patterns from a task with a 
different port configuration (Fig 5d). Singular vectors 
corresponding to temporal patterns across time and trial 
type generalised near perfectly across tasks, confirming 
that in both regions temporal patterns that described 
activity in one task described activity in all tasks.  

      
Finally, to look at how well the correlational structure 

between neurons was preserved across different 
configurations we removed the constraint for the spatial 
activity patterns to be paired with particular temporal 
activity patterns. Singular vectors corresponding to just 
the spatial patterns of activity across neurons 
generalised better in PFC than CA1, confirming that 
CA1 ‘remapped’ more than PFC between tasks (Fig 
5e). This suggests that even though both regions had 
task representations that generalised across 
configurations, different neuronal assemblies 
participated in each task’s representation in CA1 but 
less so in PFC. We performed the same analysis on 
hippocampal place cells and entorhinal grid cells 
recorded in different physical environments by Barry et 
al. (2012). Analogous to our PFC cells, entorhinal grid 
cells maintained their relative firing positions (i.e. their 
correlation structure) across environments, while CA1 
place cells ‘remapped’ (Fig 5f). 
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Our results provide preliminary evidence for common 

neuronal mechanisms underlying generalisation of 
structure knowledge in spatial and non-spatial domains.  

 

References 

Aronov, D., Nevers, R., & Tank, D. W. (2017). Mapping 
of a non-spatial dimension by the hippocampal-
entorhinal circuit. Nature, 543 (7647), 719–722. 

Barry, C., Ginzberg, L. L., O’Keefe, J., & Burgess, N. 
(2012). Grid cell firing patterns signal 
environmental novelty by expansion. 
Proceedings of the National Academy of 
Sciences.  

Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. 
J. (2016). Organizing conceptual knowledge in 
humans with a gridlike code. Science, 352 (6292), 
1464–1468.  

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & 
Uchida, N. (2012). Neuron-type-specific signals 
for reward and punishment in the ventral 
tegmental area. Nature.  

Grieves, R. M., & Jeffery, K. J. (2017). The 
representation of space in the brain. Behavioural 
Processes. 

Tolman, E. C. (1948). Cognitive maps in rats and men. 
Psychological Review.  

Figure 5:  Population Analyses Using Singular Value Decomposition. a) SVD was first used to decompose a data matrix 
comprising the activity of each neuron across time and trial types from one task into the product of three matrices which linked 
a set of temporal patterns across trial type and time (rows of 	𝑉#$%&	'( ) to a set of spatial patterns across neurons (columns of 
𝑈#$%&	'). b) The sets of temporal and spatial patterns from the first task 𝑈#$%&	'	and	𝑉#$%&	'(  were used to find the strength of the 
links Σ#$%&	. between these spatial and temporal vectors in a new task with a different physical configuration of the ports 𝐷#$%&	.. 
In all plots solid lines represent cumulative root mean square or % of the variance explained using singular vectors from the same 
task as the data matrix. Dashed lines represent cumulative root mean square or % of the variance explained using singular vectors 
from one task to explain a data matrix from a different task configuration. c) Spatio-temporal activity patterns generalised 
better across tasks in PFC than CA1. Lines represent cumulative singular values along the diagonal of Σ. d) Temporal activity 
patterns generalise perfectly across tasks in both regions. Lines represent cumulative sums of squares of values along the 
columns of 𝐴#$%&	'/. as a result of projecting the singular vectors corresponding to temporal patterns across time and trial onto 
the data matrix. e) Spatial activity patterns across neurons generalise well in PFC but less well in hippocampus analogous to 
grid cells in entorhinal cortex and place cells in CA1 in two different spatial contexts (f). Lines represent cumulative sums of 
squares of values along the columns of 𝑀#$%&	'/.	 in (e) or  𝑀$345$	'/.	 in (f) as a result of projecting the data matrix from one of 
the tasks (e) or heatmap from one of the contexts (f) onto the singular vectors of the correlational patterns across neurons in 
PFC and CA1 (e) and entorhinal grid cells and CA1 place cells (f). 
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