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Abstract
When temporally integrating information, humans are of-
ten, but not always, biased to overweigh early evidence
(“primacy effect”). We recently showed how these ob-
servations could be explained by assuming that the brain
performs approximate inference in a hierarchical model in
which expectations influence sensory inferences. Here,
we use this framework to ask two related questions: (1)
Does perceptual decision-making adapt to the rate at
which new visual information is presented, or is its as-
sumption fixed, learnt over long times? (2) Does the
strength of feedback differ near the fovea compared to
larger eccentricities, as in a recently proposed hypothe-
sis?

In a first experiment, we compared the strength of the
perceptual primacy effect in two conditions which only
differed in the duration for which each stimulus frame
was presented. We found that the primacy effect differed
when measured in physical time, but stayed the same in
“frame-time”, indicating that the brain had adapted to the
rate at which it received independent information. Sec-
ond, we compared the strength of the primacy effect near
the fovea and in the periphery, and did not find a signifi-
cant difference, suggesting an equal strength of feedback
near the fovea and in the near periphery.
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Introduction
Empirical studies show a wide variety in how subjects weigh
evidence over time to make a perceptual choice. Some-
times subjects weigh early evidence more (“primacy effect”)
(Nienborg & Cumming, 2009; Kiani, Hanks, & Shadlen,
2008), sometimes they weigh each piece of evidence equally
(optimally) (Wyart, Gardelle, Scholl, & Summerfield, 2012;
Brunton, Botvinick, & Brody, 2013), and sometimes they
weigh later evidence more into their decision (“recency
effect”)(Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016)
(Figure 1a). In a previous study (Lange, Chattoraj, Beck,
Yates, & Haefner, 2018) we could explain these apparently
conflicting results by making two contributions. First, given the
fact that the brain’s decisions are always based on intermedi-
ate sensory inferences rather than the sensory observations
(e.g. on the retina) directly, we showed that this implied a par-
titioning of total information available in the stimulus into “sen-
sory information” (the information in each observation about
the sensory inference) and “category information” (the infor-
mation in each inference is about the correct choice). The

different relative proportions of sensory and category informa-
tion were predictive of the experimental findings, with primacy
effects (decreasing psychophysical kernels, or PKs) occuring
for low sensory and high category information. Second, we
showed that approximate inference in a hierarchical genera-
tive model predicts these different temporal biases depend-
ing on relative sensory and category information (Figure 1c
and stimulus in 1d). For our present study, we concentrate on
the regime of low sensory information and high category infor-
mation. In this regime, our model makes testable predictions
for how the strength of the primacy effect should depend on
(1) the assumptions of the brain about the rate at which it re-
ceives independent information, and (2) on the strength of the
feedback connections with which prior expectations influence
sensory inferences in our model.

Results
Study 1: Does the brain adapt its assumptions
about the temporal correlations in the stimulus to
the stimuli in different tasks?
On a given trial, if the evidence in frame f is ef and the (cor-
rect) categorical identity of the stimulus is a binary variable
C ∈ {−1,+1}, then evidence in favor of C =+1 after F inde-
pendent frames is:

p(C = +1|e1, . . . ,eF) ∝ p(C = +1)
F
∏
f=1

p(ef|C = +1). In the

case of the brain, a decision-making area computing a belief
about the correct choice only has access to a sensory repre-
sentation of the stimulus, which we call x, not to the outside
stimulus e directly (Figure 1b and c). As in the Sequential
Probability Ratio Test (Gold & Shadlen, 2007), we assume the
brain approximately computes beliefs about the correct choice
as

log
pf(C =+1)
pf(C =−1)︸ ︷︷ ︸

LPOf

≡ log
p(C =+1|e1, . . . ,ef)

p(C =−1|e1, . . . ,ef)

= log
pf−1(C =+1)
pf−1(C =−1)

+ log
p(ef|C =+1)
p(ef|C =−1)

= log
pf−1(C =+1)
pf−1(C =−1)︸ ︷︷ ︸

LPOf−1

+ log
∫

x p(ef|x)p(x|C =+1)dx∫
x p(ef|x)p(x|C =−1)dx︸ ︷︷ ︸

ˆLLO f

= LPOf−1 + ˆLLO f

(1)

where ˆLLO f is the decision-making area’s estimate of the
log-likelihood ratio implied by evidence frame f , using the
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approximate sensory representation x (for details see (Lange
et al., 2018)). Presumably the decision-making area updates
its belief about C continuously, reflecting the rate of the
brain’s underlying computations, and without any knowledge
about experimenter-controlled frame-by-frame changes in
the externally presented stimulus. We therefore introduced
a parameter nU for the number of online belief updates by
the decision-making area per stimulus frame. As a result
we have to amortize the per-frame updates over nU steps,

updating nU times per frame; i.e. ˆLLOf = ∑
nU
i=1

1
nU

ˆLLO(i)
f .

This amortization coefficient 1/nU reflects a fundamental
complication in applying the sequential ratio test (SRT) to
continuous inputs from the real world: while the SRT is the
correct solution for truly independent pieces of evidence,
stimuli in the outside world are usually correlated over time,
whether they are consecutive views of the same scene,
or consecutive newspaper articles on the same topic. In
agreement with intuition, our model of approximate hierar-
chical inference predicts that the stronger the assumption
that external stimuli (in our case the images on the screen)
are independent pieces of information, the stronger the
primacy effect, and vice versa. In the context of our modeled
experiment, a stronger independence assumption means
that the brain assumes a smaller number of sensory updates
nU per independent piece of external evidence. Optimal
performance requires that it learns the correct nU . Whether
the brain can do so in a context-dependent during perceptual
decision-making, or whether it uses an approximate nU learnt
during natural vision, is the question addressed by our first
experiment.

Visual Discrimination Task Following (Lange et al., 2018),
the stimulus in our task consisted of ten visual frames. Each
frame consisted of band-pass-filtered noise with excess orien-
tation power either in the −45deg or the +45deg orientation
(Nienborg & Cumming, 2014) (Figure 1d). Here, the excess
orientation power, parameterized by 0≤ κ<∞ (parametrizing
a von-Mises filter function in orientation space), determines
the uncertainty over orientation for each frame (sensory
information). The stimulus was presented as an annulus
spanning 2.088 degrees around the fixation marker in order
to minimize the effect of small fixational eye movements
(inner circular mask spans 0.432 degrees around fixation, see
Figure 1d). Subjects reached threshold performance using a
2-1 staircase decreasing κ. We compared two variations of
this experiment: in one, the duration of each evidence frame
was 42 msecs, and in the other case it was 166 msecs.

Findings Figure 1f-g shows our model predictions for three
different stimulus frame durations (nU = 5,10,20) measured
in how many online updates the brain performs for a single
stimulus frame, ef. Figure 1f shows the case in which the
brain has learnt the correct amortization factor, 1/τ = 1/nU :
the strength of the primacy effect (slope of the weights as a

function of independent stimulus frame) is always the same.
Figure 1g shows the results assuming the brain uses the
same amortization constant no matter for how long each
independent frame was presented (1/τ 6= 1/nU ): the slope is
steeper for longer than for shorter frames. Figure 2a,b,e,f,g
show our empirical data from 10 subjects (9 naive). When
comparing the weights as a function of the independent frame
number, the average slope is the same in both condition
(Figure 2a+b) as in agreement with the hypothesis that the
brain has changed its amortization constant by a factor of
4 to account for the different frame durations in both cases.
If, however, the brain had kept its amortization constant
the same across both conditions, the weights should have
declined with the same slope when measured in physical
time – in clear contradiction of the data (Figure 2a and e).
Finally, we note that the clear primacy effect even over the
relatively short stimulus duration of 420ms (Figure 2e+f)
provides additional evidence (beyond that already in (Lange
et al., 2018)) against an internal integration-to-bound process
as an explanation for the observed primacy effect.

Study 2: Is the strength of the feedback signals
different near fovea and in the periphery?

A key driver of the primacy effect in our model and – we
propose – in the brain, is the fact that sensory inferences
incorporate top-down prior expectations. If this was not
the case, then even under the assumption of approximate
inference, our model would never predict a primacy effect and
the predicted slope would be zero. Recently, it was proposed
(Zhaoping & Ackermann, 2018; Zhaoping, 2017) that the
strength of feedback is greater in and near the fovea than
in the periphery. We tested this hypothesis by comparing
the strength of the primacy effect (quantified by the slope
of the weights) for two stimuli that varied in eccentricity but
were matched in all other aspects relevant for the model. In
particular, we scaled the area that the stimulus occupied on
the screen with the cortical magnification factor (Strasburger,
Rentschler, & Jüttner, 2011). We equivalently scaled the
spatial frequency content of the stimulus in order to account
for the dependence of the spatial frequency preferences of
cortical neurons on eccentricity (Strasburger et al., 2011).
These manipulations ensured that the number of cortical
visual neurons processing the the stimuli in the two conditions
stayed roughly the same since their number may affect the
quality of the sensory representation and hence the strength
of the primacy effect.

Visual Discrimination Task We had 7 naive subjects
perform the same visual discrimination task as in Study 1
above and described in (Lange et al., 2018) with the following
parameters. Independent stimulus frames of duration 83ms
were presented in both conditions. In the condition 1, the
stimulus had the same size as before, an annulus of size
2.088 degrees around the fixation marker (inner circular
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mask spans 0.4352 degrees around fixation). In condition
2, the stimulus was a larger annulus spanning 3.24 degrees
and the inner circular mask spans 2.088 degrees around
the fixation cross (Figure 1d+e). Spatial frequency peaked
at 0.1194 cycles/pixel for the small stimulus, compared to
0.0980 cycles/pixel for the large stimulus.

Findings Figure 1h shows our model predictions for the
change in the strength of top-down feedback signals from
decision-making area to the sensory representation. We
confirm in our model simulations that an increase in feedback
strength implies a stronger primacy effect. Hence, if the feed-
back signals near fovea are stronger than in the periphery
we would expect to see a stronger primacy effect for trials
with stimuli near the fovea than for trials with stimuli in the
periphery. Figure 2c-d shows our data from 7 naive subjects
across the two conditions indicating no significant difference
between the slopes of the weighting profiles for the two types
of stimuli. This suggests that the strength of the feedback
signals in the periphery are similar to that near fovea at over
the range of eccentricities tested by our experiment.

References

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013).
Rats and humans can optimally accumulate evidence for
decision-making. Science, 340(6128), 95–8.

Drugowitsch, J., Wyart, V., Devauchelle, A.-D., & Koechlin,
E. (2016). Computational Precision of Mental Inference
as Critical Source of Human Choice Suboptimality. Neuron,
92(6), 1398–1411.

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of
decision making. Annual review of neuroscience, 30(30),
535–574.

Kiani, R., Hanks, T. D., & Shadlen, M. N. (2008). Bounded
integration in parietal cortex underlies decisions even when
viewing duration is dictated by the environment. The Journal
of neuroscience, 28(12), 3017–3029.

Lange, R. D., Chattoraj, A., Beck, J., Yates, J., & Haefner,
R. (2018). A confirmation bias in perceptual decision-
making due to hierarchical approximate inference. bioRxiv,
440321.

Nienborg, H., & Cumming, B. G. (2009). Decision-related
activity in sensory neurons reflects more than a neuron’s
causal effect. Nature, 459(7243), 89–92.

Nienborg, H., & Cumming, B. G. (2014). Decision-related ac-
tivity in sensory neurons may depend on the columnar ar-
chitecture of cerebral cortex. The Journal of neuroscience,
34(10), 3579–85.

Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Periph-
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Figure 1: Predictions from Sampling-based Inference Model for Visual Discrimination Task
a) Possible temporal weight profiles for evidence integration tasks. b) The generative model of time-changing external evidence,
ef. The category is denoted by C and the sensory representation in the brain is xf. c) Approximate inference model: Red lines
show information flow with our assumption that a posterior over xf is represented and evidence integration happens in a decision
area representing C. Strong feedback from C to x gives primacy weighting. d) Example band-passed grating stimulus where
all frames contain noisy information about one category used in Study 1 and fovea stimulus for Study 2. e) Same as (d) used
as periphery stimulus in Study 2. f) Model Simulations: When the amortization factor τ matches number of belief updates per
frame of evidence nU , then there is no change in slope of weights (strength of primacy) with change in in nU . g) If τ 6= nU , then
primacy strengthens with increase in number of belief updates nU . h) Stronger top-down feedback from C to x gives stronger
primacy weighting.

Figure 2: Empirical Data for Study1 and Study2
a) Primacy in weighting across frame number for 10 subjects in Study1. b) No significant difference in slope of the weighting
profiles when averaged across all subjects (red dot), for the two conditions in Study1. c) Primacy in weighting across frame
number for 7 subjects in Study2. d) Same as (b) but for Study2. e) Steeper weighting profile in trials with short stimulus frame
duration when plotted w.r.t physical time. f) Scatter plot for slopes of the weighting profiles in (e). g) The κ corresponding to 70%
performance across subjects is approximately the same for the two conditions of Study 1. h) Same observation as in (g) but for
Study 2.
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