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Abstract: 
One major challenge for AI is that, while deep neural 

networks are capable of achieving human level 
performance on a wide variety of tasks, they typically 
require a greater number of learning trials than would 
be required by a human. This issue has stimulated an 
interest in the inductive biases that humans and other 
animals employ to constrain learning in complex natural 
environments. While the neural mechanisms used to 
implement inductive biases could be informative for 
both improving AI and providing a better mechanistic 
understanding of learning, these neural underpinnings 
remain elusive. Here I explore the possibility that 
stimulus-independent pairwise correlations between 
neurons, or so-called noise correlations, might reflect 
inductive biases used to constrain learning to specific 
task-relevant dimensions. I test this idea with a neural 
network model of a two-alternative forced-choice 
perceptual discrimination task in which the correlation 
among similarly tuned units can be manipulated 
independently of the overall population signal-to-noise 
ratio. Higher noise correlations among similarly tuned 
units led to faster learning through weight adjustments 
that favored homogenous weights assigned to neurons 
within a functionally similar pool. Such noise 
correlations emerge naturally with Hebbian learning. 
These results suggest that noise correlations may serve 
to reduce the dimensionality of learning thereby making 
it more rapid and robust.  
Keywords: noise correlations; inductive biases; 
learning  

Introduction 
The brain represents information using distributed 

population codes in which particular feature values are 
encoded by large numbers of neurons. A theoretical 
advantage of distributed population codes is that a 
pooled readout across many neurons can effectively 
reduce the consequences of stimulus-independent 
variability (noise) in the firing of individual neurons. 
However, the degree to which this benefit can be 
employed in practice is limited by noise correlations, or 
the degree to which stimulus-independent variability is 
shared, particularly across the subset of neurons that 
encode a particular stimulus feature (Averbeck, 
Latham, & Pouget, 2006; Cohen & Kohn, 2011). In 
particular, positive noise correlations between neurons 
that share the same stimulus tuning reduce the 
amount of decodable information in the neural 

population. Nonetheless, this type of noise correlation 
is reliably observed, particularly between pairs of 
neurons that provide evidence for the same choice or 
perceptual categorization (Cohen & Newsome, 2008), 
raising the question of why noise might be distributed 
in this task and tuning specific manner.  

 
One possible explanation might be that such 

correlations serve a purpose for learning, namely to 
reduce the effective dimensionality of learning. Such 
an explanation would be consistent with computational 
analyses of Hebbian learning rules (Oja, 1982), which 
can both facilitate faster and more robust learning, and 
in turn may induce noise correlations. Perceptual 
learning studies support the notion that learning to 
readout available sensory information might be as 
large a challenge for the brain as representing the 
information in the first place; indeed effective readout 
of visual motion information can take years of training 
in monkeys (Law & Gold, 2008; 2009).  

 
Here I explore this possibility using a simplified 

neural network model of a two alternative forced 
choice perceptual discrimination task in which the 
correlation among similarly tuned neurons can be 
manipulated independently of the overall population 
signal-to-noise ratio. Within this framework, noise 
correlations speed learning by forcing learned weights 
to be similar across pools of similarly tuned neurons, 
thereby ensuring learning occurs over the most task 
relevant dimension. Noise correlations can also be 
learned in the basic network architecture through 
Hebbian mechanisms. These results provide a first 
proof of concept for the notion that noise correlations 
could serve to control the dimensions over which 
learning occurs.  

 
 

Methods 

All simulations and analyses were performed using 
simplified and statistically tractable two-layer neural 
network. The input layer consisted of two pools of 100 
neurons that were each “tuned” to one of two stimuli. 
On each trial normalized firing rates for the neural 
population were drawn from a multivariate normal 
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distribution that was specified by a vector of stimulus-
dependent mean firing rates (signal: +1 for preferred 
stimulus, -1 for non-preferred stimulus) and a 
covariance matrix. All elements of the covariance 
matrix corresponding to covariance between units that 
were “tuned” to different stimuli were set to zero. The 
key manipulation was to systematically vary the 
magnitude of diagonal covariance components (eg. 
noise in the firing of individual units) and the “in pool” 
covariance elements (eg. shared noise across similarly 
tuned neurons) while maintaining a fixed level of 
variance in the summed population response for each 
pool: 

𝜎!""#! =  𝑛𝜎!"#$! + 𝑛(𝑛 − 1)𝐶𝑜𝑣(𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑜𝑙) 

Where 𝜎!""#!  is the variance on the sum of normalized 
firing rates from neurons within a given pool, n is the 
number of units in the pool and the within pool 
covariance (𝐶𝑜𝑣(𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑜𝑙)) specifies the 
covariance of pairs of units belonging to the same 
pool. The signal to noise ratio for the population 
response was fixed to one for all simulations 
presented here. Given this constraint, the fraction of 
the total population noise that was shared across 
neurons was manipulated as follows: 

 

 𝜎!"#$!  =             
𝜎!""#!  

𝑛 +  𝑛(𝑛 − 1)𝜙
  

 

𝐶𝑜𝑣(𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑜𝑜𝑙)  =     𝜙𝜎!""#!    

 
Where 𝜙 reflects the fraction of noise that is correlated 
across units, and was set to values ranging from 0 to 
0.2 for this set of simulations. The output layer 
contained one unit for each pool in the input layer, and 
was fully connected to the input units in a feedforward 
manner. Output units were activated on a given trial 
according to weighted function of their inputs: 
 
 

𝐹!  =     𝐹!𝑤!,!
!

  

Actions were selected as a softmax function of output 
firing rates: 
 

𝑝(𝐴!)  =     
𝑒!"!

𝑒!"!!
  

where 𝛽 is an inverse temperature, which was held 
constant for all simulations. Learning was implemented 
through reinforcement learning: 

 

Δ𝑤!,! =     𝛼𝛿𝐹! 

Where 𝐹! is the normalized firing rate of the ith neuron, 
𝛿 is the reward prediction error experienced on a given 
trial [+0.5 for correct trials and -0.5 for error trials], and 
𝛼 is a learning rate (held constant at 0.0001 for all 
simulations). The network was trained to correctly 
identify two stimuli (each of which was preferred by a 
single pool of input neurons) over 100 trials (the last 
20 trials of which were considered testing). 
Simulations were repeated 1000 times for each level of 
𝜙 and performance measures were averaged across 
all repetitions.  
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Figure 1: Noise correlations can speed learning. A) 
Schematic of the two layer neural network used in 

simulations. Network contained two pools of input units 
that responded preferentially to different stimulus 

categories. The primary manipulation was to control 
the degree to which response variability was 

correlated across neurons of a given input pool while 
maintaining a fixed signal-to-noise ratio at the 

population level (equal to 1 in this example). Output 
unit responses were a weighted sum of input layer 
firing. Weights were learned through reinforcement 
learning. B) Networks in which input layer variability 

was correlated across units within the same pool 
(lighter colors) tended to learn the task more rapidly.  

 
 

Results 
 
Two-layer feed-forward neural networks were trained 

and tested on a perceptual categorization task that 
required identification of a stimulus that was encoded 
by increased activity in one of two pools of units (Fig 
1a). Firing rates of individual input units were variable 
on each trial, and the degree to which this stimulus-
independent variability was shared across units in the 
same pool was manipulated while holding signal-to-
noise ratio of the population response constant. All 
networks learned to perform the categorization task 
(Fig 1b), however the networks in which noise was 
more highly correlated across units in the same pool 
tended to do so more rapidly (Fig 1b; lighter colors). 
Mean performance across the last twenty trials 
revealed a positive relationship between noise 
correlations and performance up to noise correlations 
of 0.2 (Fig 2a; red curve). Models with higher “in pool” 
noise correlations approached the theoretically 
achievable performance level (Fig 2a; blue line) even 
after only 80 training trials. The faster learning in the 
high noise correlation conditions was made possible 
by constraining the degree to which weights 
associated with units in the same pool could diverge 
from one another (Fig2b, compare light and dark 
weight profiles for pool 1/2 units [left/right]). 

Additional simulations revealed that the same basic 
qualitative results were obtained when 1) learning was 
supervised rather through reinforcement, 2) more than 
two pools of units were included, 3) signal-to-noise 
ratio was varied [0.5 – 2], 4) the size of the pools were 
adjusted [10-1000 units]. Furthermore, extending the 
network to include a fully connected intermediate layer 
that learned connectivity weights to the input layer 
through a Hebbian mechanism was capable of 
reproducing beneficial noise correlations.  

  

 

 

 

Figure 2) Noise correlations can improve learning by 
targeting learning to relevant dimensions A) Optimal 
readout of input layer in all networks yielded a similar 

level of performance (blue) but learned weights yielded 
better perfomance (red) for by models that had higher 
noise correlations (abscissa). B) learning was faster 

because correlated networks (lighter colors) tended to 
learn similar weights (ordinate) for all units within a 

given pool (abscissa), whereas less correlated 
networks (darker colors) tended to learn more variable 

weight profiles. 
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Discussion 
 
Positive noise correlations between similarly tuned 

neurons are typically observed in paired recordings 
(Cohen & Newsome, 2008) despite their apparent 
deleterious effects on the quantity of decodable 
information in neural populations (Averbeck et al., 
2006). One possible reason for this is that such noise 
correlations can speed learning by effectively reducing 
the dimensionality of the learning problem. In the very 
simplified set of simulations presented here, learning 
the appropriate weights for independently firing units 
requires estimating one parameter for each neuron in 
the population and in the presence of noise this leads 
to over-fitting (high variance on weight profile in 2b). In 
contrast, increased noise correlations force learning to 
ascribe similar weights to all neurons within the same 
pool, which, in the extreme as noise correlations 
approach 1, is analogous to estimating one parameter 
per pool. Thus, while the simulations presented here 
are by necessity an oversimplification of the processes 
implemented in the brain, they suggest that noise 
correlations might help constrain learning to 
meaningful dimensions. If this is the case, then a 
closer look at noise correlation profiles in the brain 
might shed light on the sorts of inductive biases that 
guide learning in humans and animals.  
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