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Abstract: 

Generalized Linear Model (GLMs) analysis is a popular 
tool in psychophysics and neuroscience for inferring the 
relative influence of various experimental factors onto 
choices, reaction times, neural activity and other 
observables. However, GLMs are intrinsically limited by 
their linearity assumption, and can lead to severe 
misattribution errors when (correlated) regressors 
contribute nonlinearly to the observed response. We 
show how this framework can be expanded to capture 
nonlinear functions. First, Generalized Additive Models 
(GAMs) allow to capture a nonlinear contribution for 
each regressor. A Gaussian Processes (GP) treatment of 
GAMs allows to recover the posterior distribution for 
each nonlinear mapping. Second, as neuroscience is 
often interested in the interaction of cognitive factors, we 
present a Bayesian treatment of Generalized Multilinear 
Models (GMMs) that capture multilinear interactions 
between different sets of regressors. GMMs can be 
applied e.g. when inferring the modulation of sensory 
processing by additional factors such as attention 
factors. Merging the frameworks of GAMs and GMMs 
yield Generalized Unrestricted Models (GUMs), a highly 
versatile and interpretable environment to capture 
cognitive determinants of behavior and neural activity. 
Crucially, these models can be efficiently estimated, 
even with limited dataset; Bayesian techniques can be 
applied to test which model is best supported by data.  
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Limitations of GLMs 

GLMs are represented by the generative model 𝐸[𝑦𝑘] =
∑ 𝑤𝑖𝑋𝑖𝑘𝑖 . When regressors (𝑋1, . . 𝑋𝑛) are correlated and 
the true underlying model is nonlinear, significant 
weights can be detected for non-contributing 
regressors. For example, we applied linear regression 
on spike count for a MT neuron during visualization of a 
random-dot kinetogram (Bair, Zohary, & Newsome, 
2001), with motion coherence and accuracy of the 
monkey response at the end of sensory presentation as 
regressors. Surprisingly, this analysis concludes that 

the neuron response activity depended on whether the 
animal would behave correctly (p<0.005, figure 1a). 
However, such false positive can be accounted for by 
the fact (figure 1b) that neural activity depends 
nonlinearly on motion coherence (full blue curve), and 
that accuracy (red curve) correlates with the residual 
(gray) from the linear trend (dotted blue line). Various 
enhancements of the GLM framework have been 
proposed to correct for these limitations, but are seldom 
used in cognitive psychology and neuroscience. 

 

Figure 1: False positive in a GLM analysis induced 
by incorrect linearity hypothesis. a) Result of the GLM 
analysis with MT neuron spike count as predictor, and 
signed coherence and monkey accuracy on the same 
trial as regressors. b) Average neuron firing rate (blue 
curve) and monkey accuracy (red curve) as a function 
of signed coherence. Blue dotted line represents the 

linear trend, the gray line is the residual. 

 

GAMs model each regressor as nonlinear 
mapping 

GAMs allow to fit functions 𝑓𝑖 in the form 𝐸[𝑦𝑘] =
∑ 𝑓𝑖(𝑋𝑖𝑘)𝑖  (Wood, 2006). Traditional treatment of GAMs 
is limited however by the a priori definition of a set of 
basis functions for each regressor. GP framework sets 
prior 𝑓𝑖~𝑁(0,𝐾𝑖), where 𝐾𝑖 is a certain covariance 
function (e.g. Gaussian kernel) defining the expected 
variance and smoothness for 𝑓𝑖 (formally the covariance 
for any finite set of function evaluations). Then an 
(approximate) posterior distribution is computed for the 
different mapping 𝑝(𝑓𝑖|𝑦) (Adam, Hensman, & Sahani, 

2016). In figure 2a we illustrate how a function 𝑓2(𝑥) =
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2𝑐𝑜𝑠(𝑥) (red curve) is estimated (blue curve) by 
observing binary from model 𝑝(𝑦𝑘) = 𝜎(𝑋1𝑘 + 2𝑐𝑜𝑠𝑋2𝑘) 

and fitting generative model 𝑝(𝑦𝑘) = 𝜎(𝑤1𝑋1𝑘 +

𝑓2(𝑋2𝑘)). Fitted smoothness parameter (e.g. by 

maximizing ELBO) naturally adapts to dataset; small 
dataset will lead to overestimated scale parameter, 
naturally retaining the most relevant trend in 𝑓𝑖 (figure 
2b).  GP prior also improves weight estimation for 
ordinal regressors (i.e. inferring the influence of sensory 
samples in a sequence), compared to vanilla or L2-
regularized GLM (figure 2c).  

 

Figure 2: GAMs with GP framework allow to capture 

nonlinear mapping of regressor onto 
observables. a) Fit of a GAM model with 500 

binary observations (blue curve: MAP function; 
dotted lines represent standard deviation of 

the posterior distribution) against true function 
(red). b) Impact of number of observations. 
With low number of observations (left), the 
fitted scale of the SE kernel remains high, 

essentially avoiding overfitting of the function 
(true function: black; estimated function: blue 
curve). With higher number of observations 

(right), the fitted scale goes down, allowing to 
capture finer details. c) Comparison of a 

model fits when binary observations (choices) 
derive from the weighted sum of weighted sum 
of evidence provided by sequential samples, 

with exponential decay (referred to as priming 
effect in the literature). Applying GP prior 

(right) allows a better estimation of the weights 
than standard techniques such as 

unregularized GLM or L2-regularized GLM 
(i.e. ridge logistic regression, left panel). 

GMMs model interactions between sets of 
regressors 

GMMs use sets of regressors, e.g. (𝑅1, . . 𝑅𝑛) and 
(𝑆1, . . 𝑆𝑚): 𝐸[𝑦𝑘] = ∑ 𝑢𝑖𝑅𝑖𝑘.𝑖 ∑ 𝑣𝑗𝑆𝑗𝑘𝑗  (bilinear case) 

(Ahrens, Linden, & Sahani, 2008). While no longer 
convex, the fitting procedure for weights 𝑢𝑖 and 𝑣𝑗 

(which involves alternatively updating one set of 
weights using Iterative Reweighting Least Square 
(Bishop, 2006) while leaving the others unchanged) 
generally gives consistent results. Compared to the full 
interaction model 𝐸[𝑦𝑘] = ∑ 𝑤𝑖𝑗𝑅𝑖𝑘𝑆𝑗𝑘𝑖,𝑗 , they offer more 

interpretable results and require much less data, as the 
number of parameters scale as O(m+n) and not O(mn). 
We illustrate the method on choice data in a perceptual 
accumulation 2AFC task where human subjects add to 
judge whether the overall orientation of a sequence of 
Gabor patches was tilted leftwards or rightwards 
(Wyart, de Gardelle, Scholl, & Summerfield, 2012). 
Standard GLM for responses 𝑅𝑘is 𝑝(𝑅𝑘) = 𝜎(𝑤0 +
∑ 𝑤𝑖𝑋𝑖𝑘𝑖 ), where 𝑋𝑖𝑘 = 𝑐𝑜𝑠(𝜃𝑖𝑘 − 𝜃𝑟𝑒𝑓) and 𝜃𝑖𝑘 is the 
orientation for the ith sample in the sequence. GMMs 
with 4 interacting set of regressors (sensory sample, 
previous trial outcome, block position and subject id) 
captured modulation of sensory processing by previous 
trial outcome (after-error correction, second panel) and 
block position (improvement during learning followed by 
fatigue-induced performance decay, third panel): 

𝑝(𝑅𝑘) = 𝜎(𝑤(𝑠𝑢𝑏𝑗(𝑘)) +∑ 𝑤𝑖𝑋𝑖𝑓𝑓2(𝑎𝑐𝑐𝑢(𝑘 −𝑖

1) 𝑓3(𝑏𝑙𝑜𝑐𝑘(𝑘))𝑓4(𝑠𝑢𝑏𝑗(𝑘)). GMMs analysis reveals 

jointly: recency effect (last samples in sequence have 
larger influence, figure 3a), after-error control 
adaptation (higher sensitivity following errors, figure 
3b); modulation of performance by block (figure 3c); and 
heterogeneity in subject performance (figure 3d). 
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Figure 3: Fit of a GMM to participants choices in a 
visual accumulation task. a) estimated weight for 

visual frames (titled Gabors) as a function of position 

in the sequence𝑤𝑖. b) modulation by previous trial 
outcome 𝑓2. c) modulation by block index 𝑓4. d) 

modulation by subject identity 𝑓4 (9 subjects). 

GUMs combine the framework of GAMs 
and GMMs 

GUM general form is: 𝐸[𝑦𝑘] = ∑ ∏ ∑ 𝑓𝑐𝑑𝑖(𝑋𝑐𝑑𝑖𝑘)𝑖
𝑚(𝑐)
𝑑=1𝑐 , 

where each 𝑓𝑐𝑑𝑖(𝑋𝑐𝑑𝑖𝑘) can be substituted by 𝑤𝑐𝑑𝑖𝑋𝑐𝑑𝑖𝑘 
if linearity with this regressor is assumed. This offers a 
particularly rich and flexible framework, where 
depending on the cognitive model one wants to test one 
can fit and compare models such as 𝐸[𝑦𝑘] = (𝑓1(𝑋1𝑘) +
𝑤2𝑋2𝑘)𝑓3(𝑋3𝑘) + 𝑤4𝑋4𝑘 or 𝐸[𝑦𝑘] = (𝑓1(𝑋1𝑘) +

𝑓2(𝑋2𝑘))(𝑓3(𝑋3𝑘) + 𝑓4(𝑋4𝑘)) + ∑ 𝑤𝑖𝑋𝑖𝑘
10
𝑖=5 . Inference on 

function 𝑓𝑖 and weights 𝑤𝑖 can be run using a variety of 
Gaussian approximations, from Laplace approximation 
to variational inference and Expectation-Maximization 
(Rasmussen & Williams, 2006). Results on synthetic 
data using various observation types (binary, 
continuous, counts) showed that fitting is generally well 
behaved (not shown). We used GUMs in the 
accumulation task dataset to probe the sensory-to-
perceptual mapping. Instead of assuming the optimal 
cosine mapping as in e), we estimated 𝑓1 using GUM: 

𝑝(𝑅𝑘) = 𝜎(𝑤(𝑠𝑢𝑏𝑗(𝑘)) +∑ 𝑤𝑖𝑓1(𝜃𝑖𝑘)𝑖 𝑓2(𝑠𝑢𝑏𝑗(𝑘)). 

Fitted values show that the actual sensory-to-
perceptual mapping is close to the optimal cosine 
mapping (figure 4b), as well as previously reported 
recency effect in sample weighting (figure 4a), and  
subject-dependent lateral bias w(subj(k)) (figure 4c) 

 

 

Figure 4: Fits of a GUM to participants choices in 
visual accumulation task (same data as figure 3). a. 
estimated weight for visual frames as a function of 

visual frames. b) nonlinear mapping from orientation to 
weight, closely following the normative cosine form. 
Maximal positive weight towards right responses is 

achieved when the orientation of the sample is aligned 
with that of the reference orientation for right 

responses (45 degree tilted rightwards), maximal 
negative weight for the opposite orientation. c) 

Modulation by subject identity 𝑓2. 

Conclusions 

A Matlab toolbox will be available to allow for rapid, 
flexible usage of GUMs for cognitive psychology, 
neuroscience and other disciplines. 
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