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Abstract: 

Despite the well-established benefits of training on 
perceptual decision-making, there is still considerable 
uncertainty regarding the precise stages of information 
processing that are altered by learning. Here, we sought 
to characterize the neural adjustments that take place 
along the sensorimotor hierarchy following training on a 
perceptual task. To this end, we isolated distinct 
electrophysiological signatures of perceptual decision-
making at the three key stages of information processing 
necessary for simple sensorimotor transformations- 
sensory evidence encoding, decision formation and 
motor preparation- as participants trained on a contrast 
discrimination task over five days. Steady-state visual 
evoked potentials (SSVEPs) reliably traced changes in 
stimulus contrast, thereby providing a read-out of 
sensory evidence encoding, while the centroparietal 
positivity (CPP) and lateralized beta-band activity 
provided domain-general and effector-selective indices 
of decision formation, respectively. Over the course of 
training, subjects learned to make quicker and more 
accurate perceptual decisions. These improvements 
were accompanied by a progressive boosting of sensory 
evidence representation, which in turn led to an increase 
in the build-up rate and peak amplitude of the CPP. A 
diffusion model analysis attributed the learning effects to 
increases in the rate of evidence accumulation, but no 
changes in the decision bound were observed. 
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Background 

An important component of adaptive human behaviour 
is the ability to refine and enhance our perceptual 
capabilities through learning. Indeed, it is well 
established that our ability to make perceptual 
decisions improves with practice, a phenomenon better 
known as perceptual learning (for a recent review, see 
Dosher & Lu, 2017). However, there is considerable 
debate as to the precise neural adaptations 
underpinning these behavioural improvements. One 
particular source of debate pertains to whether these 
improvements reflect changes in early sensory 
representations or changes in later stages of the 
decision process involved in the read-out of sensory 
evidence from representational units (e.g. Petrov, 
Dosher & Lu, 2005; Bejjanki et al., 2011). In the primate 
neurophysiological literature, under the guidance of the 
sequential sampling framework, significant advances 
have been made in addressing this issue (e.g. Law & 
Gold, 2008). However, in human neurophysiology the 
neural mechanisms of perceptual learning have yet to 
be thoroughly investigated within the context of 
sequential sampling. Thus, the aim of the present study 
was to examine the impact of training across the 
hierarchy of information processing in the human brain 
by isolating distinct signatures of sensory evidence 
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representation and sensory evidence accumulation at 
domain-general and effector-selective levels using 
temporally-precise electrophysiological recordings. The 
results from this neurophysiological analysis will also be 
compared with the results of a diffusion model fit to the 
behavioural data (Ratcliff, 1978) to assess whether the 
effects of learning on the behavioural and neural 
signatures of perceptual decision-making are 
consistent with one another.   

Methods 

Psychophysical task and perceptual learning 
protocol 

Participants performed a difficult two-alternative 
contrast discrimination task in which they were required 
to discriminate the direction (left or right) of a target 
(tilted grating stimulus) based on a change in the 
relative contrast between two overlaid grating stimuli 
(see Figure 1). The gratings were ‘frequency tagged’ in 
order to allow independent measurement of sensory 
evidence in favour of both possible choices via separate 
steady-state visual evoked potentials (SSVEPs), with 
the left- and right-tilted gratings flickering at 20 Hz and 
25 Hz, respectively. The stimuli were held at 50% 
contrast for an initial foreperiod, after which they 
underwent antithetical changes in contrast whereby the 
target stepped up in contrast while the non-target 
stepped down by a corresponding amount. This change 
in contrast was determined separately for each 
participant and was estimated via a staircase procedure 
conducted at the beginning of the study.  

At end of each trial, feedback was presented 
onscreen and indicated whether the subject had 
responded correctly, incorrectly or failed to respond 
within the deadline. Points were awarded on a trial-by-
trial basis according to the accuracy and speed with 
which the participants responded. Every correct 
response was awarded 40 points plus a speed bonus, 
while incorrect responses and missed targets were 
awarded no points. The maximum speed bonus was 40 
points and this amount diminished linearly from 40 to 0 
points across a 2000 ms period. Participants trained on 
the contrast discrimination task for five sessions and 
were encouraged to improve their performance via 
monetary incentives.  

EEG signal analysis 

In order to investigate the effects of training on the 
neurophysiological correlates of perceptual decision-

making, EEG data were collected while participants 
trained on the contrast discrimination task. Following 
previous work from our lab (e.g. O’Connell, Dockree & 
Kelly, 2012; Steinemann, O’Connell & Kelly, 2018), 
distinct neural signatures of perceptual decision-making 
were isolated in the EEG signal. These included the 
steady-state visual evoked potential (SSVEP), which 
tracked the representation of stimulus contrast thereby 
providing a direct measure of sensory evidence, a 
domain-general decision formation signal found in the 
event-related potential (ERP), termed the centroparietal 
positivity (CPP), and oscillatory activity in the mu/beta 
frequency bands (10-30 Hz) that indexes evidence 
accumulation in an effector-selective manner (e.g. de 
Lange et al., 2013). The effects of training on the rate 
and peak amplitude of sensory evidence accumulation 
were measured by examining the decision-related 
activity in the response-locked CPP and mu/beta 
waveforms. The build-up rate of the CPP was measured 
as the slope of a straight fitted line to the unfiltered ERP 
over a time window of -500 to -200 ms relative to 
response. The slope of response-locked mu/beta 
lateralization waveform was measured over the time 
window -450 to -150ms relative to response. The peak 
magnitude of the response-locked CPP was calculated 
as the average amplitude within the -100 to 100ms 
window centred on the individual response time, while 
the trough of the mu/beta lateralization was calculated 
by averaging the FFT values within the window -150 to 
-50 ms relative to response.  

Drift diffusion modelling 

Preliminary modelling of the data was conducted by 
fitting the behavioural data with a two-choice drift  

Figure 1: Schematic of two-alternative forced choice 
contrast discrimination task. At the beginning of each trial, 
overlaid left and right tilted gratings were presented at 
50% contrast. After an initial foreperiod, that varied 
unpredictably from trial to trial, one grating stepped up in 
contrast while the other stepped down by a corresponding 
amount. Participants reported the orientation of the target 
via a click of a mouse button. 
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diffusion model with six free parameters (non-decision 
time, drift rate for left targets, drift rate for right targets, 
decision bound, starting point, urgency). Urgency was 
modelled as a straight linear collapse of the decision 
bound as a function of time. The diffusion model was fit 
to the pooled-subject behavioural data for each training 
day by minimizing the G2 statistic with a SIMPLEX 
minimization routine.  

    Results 

Behavioural findings 

Task performance improved significantly over the 
course of training with a linear increase in the number 
of points that participants earned per trial (F(2.24, 
47.13)  = 38.07, p<.001; Figure 2a). This improvement 
in overall performance reflected a combination of 
increased accuracy (F(2.39, 47.83) = 31.30, p<.001; 
Figure 2b), faster response times (F(2.72, 57.21) = 
4.69, p<.01; Figure 2c) and a reduction in the proportion 
of missed responses (F(2.45, 49.00)  =11.86, p<.001; 
Figure 2d).  

Electrophysiological findings 

To investigate the effect of training on sensory evidence 
encoding, a difference SSVEP was calculated by 
subtracting the non-target SSVEP (diminishing 
contrast) from the target SSVEP (increasing contrast) 

on each trial. While training did not affect the overall 
signal-to-noise ratio of the SSVEP, it did enhance the 
representation of the difference in contrast between the 
two grating stimuli (F(4, 72) = 2.92, p<0.05; Figure 3a). 
In line with this improvement in the representation of 
sensory evidence, there was also a corresponding 
improvement in the quality of the cumulative sensory 
evidence reflected in the increased build-up rate of the 
response-aligned CPP with training (F(4, 72) = 2.82, 
p<0.05; Figure 3f). Furthermore, the peak amplitude of 
the CPP at response was larger for later training 
sessions (F(2.83, 51.02) = 3.46, p<0.5) suggesting that 
participants based their decisions on a greater quantity 
of cumulative sensory evidence later in training. 

Training Session

Figure 2: Behavioural performance as a function of 
training session. Training results in a significant 
improvement in A) points per trial, B) accuracy, C) 
reaction times and D) missed response rate. 

Figure 3: A) Topography of the d-SSVEP measured at 
response showing a positive component over occipital 
regions of the brain. B) Stimulus- and C) response-
aligned CPP separated according to training session. 
D) Topography of the CPP measured at response 
showing a positive component over centroparietal 
regions of the brain. E) Stimulus- and F) response-
aligned CPP separated according to training session. 
G) Topography of mu/beta lateralization at response. 
H) Stimulus- and I) response-aligned mu/beta activity. 
(insert: mu/beta lateralization).   

147



However, these enhancements in cumulative sensory 
evidence did not translate into corresponding 
improvements at the effector-selective level of decision 
formation as there was no corresponding increase in 
either the magnitude (F(4, 72) = 0.14, p=0.97) or slope 
(F (2.39, 43.09) = 0.74, p=0.57) of pre-response 
mu/beta lateralization (Figure 3I).  

Preliminary modelling findings 

A standard drift diffusion model was fit to the pooled 
correct and error response time distributions for each of 
the five training sessions. Consistent with the increased 
build-up rate of the CPP as function of training session, 
drift rate increased as a result of perceptual learning 
indicating that the quality of evidence being integrated 
during decision formation improves with training. 
However, the diffusion analysis revealed no change in 
the decision boundary parameter following training 
which is at odds with the increase in the peak amplitude 
of the CPP for later training sessions. Future research 
will attempt to reconcile our neurophysiological findings 
with the modelling results using a neurally-informed 
modelling approach (e.g. McGovern et al., 2018).  

Discussion 

Our results shed light on the multifaceted nature of the 
mechanisms underlying learning in perceptual decision-
making. Two key mechanisms of learning were 
identified. First, training boosted the representation of 
the sensory evidence relevant to the decision that 
observers were trained to make. This is reflected in the 
increased amplitude of d-SSVEP following training. As 
a result of this increase in the quality of the sensory 
evidence representation, the rate of sensory evidence 
accumulation correspondingly increased, as reflected in 
the increasing slope of the CPP with training. 
Furthermore, participants became faster in their 
responses and missed fewer targets leading to an 
overall increase in their performance. Second, training 
also increased the peak amplitude of the CPP prior to 
response suggesting that participants sought to 
accumulate more evidence before committing to a 
decision in later training sessions. This change in 
decision policy led to an increase in task accuracy, but 
also comes at the expense of response speed. This 
may explain the observation that, despite increasing the 
quality of sensory evidence accumulation throughout 
training, response times plateaued after session three 
rather than becoming progressively faster. Together 
these results suggest that learning is mediated both by 
improvements in the efficiency of perceptual processing 
and by strategic adjustments in decision policy. 
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