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Abstract: 

Recently we provided a large-scale brain network 
account of adaptive listening behavior. Our study 
illustrated how modular reconfiguration of cortical 
networks derived from brain hemodynamic responses 
shape individuals’ listening behavior, and accordingly 
posed an important question: Do frequency-specific 
neural oscillations reconfigure their networks at large-
scale as they get engaged in active listening? Here we 
address this question by combining source imaging of 
scalp electrophysiological signals with frequency-
resolved graph-theoretical network analysis. We first 
show that power-envelope correlation between neural 
oscillations within alpha/beta frequency band can be 
reliably measured during both resting and listening 
states. These correlations show a good agreement with 
those derived from brain hemodynamic responses. 
However, we find that there is no one-to-one 
correspondence between the modularity of 
hemodynamic brain networks and amplitude-coupled 
neural oscillations at a specific frequency. Our results 
suggest that precise spectral and topological 
characterization of amplitude-coupled neural 
oscillations requires frequency- and connection-
resolved investigation. 
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Introduction 

In noisy, multi-talker situations, listening turns into a 
challenging cognitive task for our brain. Under such 
circumstances, listening is often facilitated by a stronger 
engagement of auditory spatial attention (‘where’ to 
expect speech) and context-dependent semantic 
prediction (‘what’ to expect). It is plausible to assume 
that these neurocognitive strategies require a fine-tune 
configuration of distributed cortical networks in order to 
support listening success. 
 
We recently provided a large-scale brain network 
account of adaptive listening behavior (Alavash et al., 
2018). In our study, 49 participants underwent fMRI 
during resting state and a challenging speech 
comprehension task. We found that, in adaptation to the 

listening task, resting-state brain networks were 
reconfigured towards more localized cortical 
processing–predominantly within a fronto-temporal 
auditory-control network–and displayed higher 
modularity during the listening task. Importantly, the 
degree to which modularity of this auditory-control 
network increased relative to its resting state baseline 
predicted individuals’ speech comprehension success. 
 
An important question which remained unanswered is 
how coupling between frequency-specific neural 
oscillations underlies this task-specific reconfiguration. 
To answer this question, in the present study we 
combined source imaging of scalp 
electroencephalography (EEG) signals recorded during 
resting state and the same listening task with 
frequency-resolved graph-theoretical network analysis. 
Previous work suggest that task-specific cortical 
networks rely on neural interactions at slow time scale 
(<0.1 Hz) (Siegel et al., 2012). Specifically, power 
envelope of neural oscillations within alpha and beta 
frequency bands exhibit this characteristic, and their 
coupling–as measured by their envelope correlation 
over time–has been suggested as one network 
mechanism underlying behavior (Engel et al., 2013). 
Accordingly, the present study aims at spectral 
characterization of large-scale cortical networks during 
resting state and active listening, and asks whether the 
resting brain neural oscillations reconfigure their 
connectivity and modularity in adaptation to listening. 

Materials and Methods 

Participants Here we report the results based on the 
data of forty-nine healthy adult participants from an 
ongoing large-scale study entitled “The listening 
challenge: How ageing brains adapt (AUDADAPT)”. 
Each participant completed seven runs of EEG 
recording: eyes-open resting state (~5 min) followed by 
six blocks of a challenging speech comprehension task 
(~10 min each). Out of these forty-nine participants, 
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twenty-four had also completed fMRI on a separate day, 
whose data have been used in (Alavash et al., 2018). 

Listening task As the focus of the present study is on 
spectral characterization of large-scale cortical 
networks at resting and listening states, we here 
provide only a brief description of the listening task and 
refer the reader to (Alavash et al., 2018) for details. 
During the task, participants listened to two competing, 
dichotically presented sentences and were probed on 
the sentence-final word in one of the two sentences. 
Sentence presentation was preceded by two cues that 
informed participants about the to-be-probed side 
(spatial cue) and the semantic category of the two 
sentence-final nouns (semantic cue). The participants 
had the task to choose the final word of the to-be-
probed sentence form a visual response array. 

EEG recording and analysis Electroencephalogrphy 
was conducted using 64 active cap electrodes. EEG 
data were analyzed using EEGlab and Fieldtrip Matlab 
toolboxes (Delorme and Makeig, 2004; Oostenveld et 
al., 2011). Independent component analysis (ICA) was 
used to remove all non-brain signal components. This 
procedure was applied to the concatenated rest and 
task data. The continuous EEG was band-pass-filtered 
(0.3 –180 Hz). Task data were cut into epochs –2 to 8 s 
relative to the onset of the spatial cue to capture cue 
presentation and the entire auditory stimulation. 
Resting state data were similarly cut into 10-sec 
continuous epochs. Spectrotemporal estimates of the 
sensor signals were obtained within each epoch, at 
frequencies ranging from 8 to 32 Hz (Morlet’s wavelets). 

EEG source imaging Individual forward head models 
were created using each participant’s T1 MRI. The fit of 
digitized head surface points to individuals’ 
reconstructed head surfaces were optimized using 
rigid-body transformation. Individual anatomical images 
were spatially normalized to the standard Connectome 
Workbench template. The inverse of these operations 
were applied to a cortical surface grid in the same 
template space to obtain subject-specific cortical 
surface grid points. The physical relation between 
sources and sensors for all grid points was estimated 
using boundary element method. Next, a frequency-
domain beamforming approach, namely partial 
canonical coherence (PCC) (Schoffelen and Gross, 
2009) was applied to the concatenated rest and a 5-min 
task data to obtain a common spatial filter. Finally, the 
sensor-level complex-value wavelet estimates were 
projected to source space using the spatial filters. 

Cortical parcellation and connectivity analysis 
Nodes of the networks were defined according to a 
multimodal parcellation encompassing 362 cortical 
nodes (Glasser et al., 2016). This template was used to 

average time-frequency estimates across grid points 
within each node. To assess frequency-specific neural 
interactions, we computed Pearson’s r between the log-
transformed powers of all pairs of nodes separately for 
resting state and listening task. To eliminate the trivial 
common co-variation in power measured from the same 
sources, we used the orthogonalization approach 
proposed by (Hipp et al., 2012). This gave us 
frequency-specific 362-by-362 correlation matrices per 
subject, for each rest and task condition. 

Network analysis Brain graphs were constructed 
based on connectivity matrices by including links in the 
graph according to the rank of their absolute 
correlations. The number of links in each brain graph 
was fixed at 10% of network density. Mean connectivity 
was defined as the average of upper-diagonal 
correlations within the sparse matrices. Network 
modularity was quantified using Newman’s optimization 
algorithm as implemented in the Brain Connectivity 
Toolbox (Rubinov and Sporns, 2010). 

Reliability analysis of EEG source connectivity The 
signal-to-noise ratio (SNR) poses a serious but often 
neglected potential confounding factor in assessments 
of neuronal interactions. This is an important issue in 
the present study as we compare connectivity under 
two conditions, i.e., resting state and listening task, 
each of which is potentially measured at different levels 
of SNR. Therefore, we first asked at which frequency 
and cortical node connectivity can be measured reliably 
in both conditions. As a measure of reliability, we used 
between-subject correlation of connectivity patterns 
(columns of correlation matrices) across rest and task. 
This correlation is underestimated in the presence of 
noise. Thus, we applied Spearman’s correction for 
attenuation to account for differences in SNR, similar to 
(Hipp and Siegel, 2015). At a given frequency and node, 
estimation of connectivity was considered reliable if the 
attenuation-corrected correlation was consistently 
positive across all participants. 

Relation to fMRI For those participants with both EEG 
and fMRI, we assessed the correlation between mean 
connectivity and network modularity across the two 
imaging modalities using Spearman’s rank correlation. 

Results 

EEG power-envelope correlations can be 
reliably measured within alpha/low-beta bands 

Power-envelope correlations estimated under resting 
state and the listening task showed consistently positive 
between-subject correlations in node-to-all connectivity 
within the frequency range 4–32 Hz (Fig. 1A). 
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Figure 1: Reliability of EEG source connectivity and 
its correspondence with fMRI under resting and 
listening states. Shaded errors in A: ±SEM across 
cortical nodes. 

As these correlations were averaged across all cortical 
nodes, we next quantified percentage of nodes which 
showed this relationship. We found that within the 
frequency range 8–24 Hz (alpha/low-beta) envelope-
correlation was measured reliably across all cortical 
nodes under both resting state and listening task (Fig. 
1A). 

Correspondence between EEG and fMRI 
connectivity within alpha/low-beta range 

Twenty-four participants out of 49 were those who also 
completed the same experiment inside fMRI scanner. 
For these participants, we found consistently positive 
correlations between EEG and fMRI whole-brain 
connectivity within high-alpha/low-beta bands. These 
positive correlations were found for both resting state 

and listening task conditions, and peaked at 
frequencies ~16 Hz (Fig. 1B). 

No one-to-one correspondence between EEG 
and fMRI network modularity 

The correlation between network modularity across the 
two imaging modalities did not show a consistent 
spectral profile. For resting state, this correlation was 
positive in the range 8–12 Hz (r~0.4) and turned 
negative in the range 16–24 Hz (r~–0.2; Fig. 1C). In the 
case of the listening task, this correlation fluctuated but 
remained positive within the range 8–24 Hz. 

Spectral profile of cortical networks differ 
between resting and listening states 

We next focused on the connectivity and network 
modularity derived from EEG power-envelope 
correlations under each rest and task condition. For 
connectivity, the spectral profile peaked at 10 Hz in the 
case of resting state, and it plateaued within 8–21 Hz in 
the case of the listening task (Fig. 2AB, left). Within this 
range, the strength of mean connectivity was weaker in 
the case of listening task as compared to resting state 
(Fig. 2C, left). This difference was significant only at 10 
Hz (permutation test, p=0.03, Cohen’s d=–0.25). For 
modularity, the difference was the strongest at 8 and 16 
Hz (permutation test, p<0.01, Cohen’s d=–0.75). 

Discussion 

Our results suggest that power-envelope correlations 
within alpha/low-beta ban can be reliably measured 
using source imaging of conventional 64-channel EEG 
signals during resting state and task. The strength of 
these correlations showed a good correspondence with 
those derived from brain hemodynamic responses 
below 0.1 Hz. This is in good agreement with previous 
studies (Hipp and Siegel, 2015). 
 
However, when modularity in these large-scale 
networks is compared between the two imaging 
modalities, a direct correspondence seems lacking. 
Network modularity is a topological metric which 
depends on the connection patterns across the network 
rather than the correlations per se. It has been 
previously suggested that correlations between brain 
hemodynamic responses reflect different 
electrophysiological processes in different frequencies 
(Hipp and Siegel, 2015). Importantly, it has been shown 
that this dependency is different across cortico-cortical 
connections. Accordingly, we argue that the topology of 
cortico-cortical neural interactions as measured by 
power-envelope correlation depends on the cortical site 
and frequency of the interacting nodes. 

155



 

Figure 2: Spectral profile of whole-brain connectivity 
and network modularity under resting and listening 
states. Shaded errors: ±SEM across N=49 participants. 
 
Here we additionally compared connectivity and 
modularity of large-scale networks of amplitude-
coupled neural oscillations between resting state and 
listening task. Based on our recent fMRI study we 
expected a degree of reconfiguration in these networks, 
particularly within alpha/low-beta band. The 
connectivity and modularity of resting and listening 
brain networks within this range were indeed different. 
In line with our prediction, this difference was more 
pronounced for network modularity, particularly at 16 
Hz. However, the direction of this network alteration 
was opposite to what we had found in fMRI: modularity 
decreased during listening as compared to resting 
state. This finding again suggests that there is no one-
to-one correspondence between the topology of 
hemodynamic brain networks and amplitude-coupled 
neural oscillations at a specific frequency. 
 
In sum, our results support the view that amplitude-
coupling of neural oscillations at alpha/beta band can 
be used as a proxy for brain-wide network 

communication at different cognitive states. However, 
the precise spectral and topological characterization of 
these networks requires frequency- and connection-
resolved investigation. 
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