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Abstract

Functional and Structural MRI studies benefit from good
segmentation of grey and white matter, for example to al-
low for cortex-based alignment. Automatic segmentation
tools apply (multi-) atlas-based segmentation strategies
that often lack the accuracy on difficult-to-segment brain
structures and take several hours of processing. More-
over, these algorithm depend on aligning scans and at-
lases. Alternatively, to avoid this last step, many meth-
ods nowadays deploy solutions based on Convolutional
Neural Networks (CNNs), by which the testing volume
is partitioned into 2D or 3D patches processed indepen-
dently. This entails a loss of global contextual informa-
tion thereby negatively impacting the final accuracy of the
segmented structures. To fully exploit global spatial in-
formation, we introduce a CNN-based segmentation algo-
rithm that processes the whole MRI volume at once and
produces an accurate result in only few seconds start-
ing from a single MRI sequence (T1y). Training and test-
ing are performed on 947 out-of-the-scanner MRI volumes
acquired using a standard 1mm-isotropic MPRAGE se-
quence (3T). Results are evaluated using the Dice Simi-
larity Coefficient and the Hausdorff Distance. The com-
parison with the state of the art shows that our method
outperforms any other current CNN-based solution.
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Introduction

When dealing with brain MRI, segmentation plays a role of
fundamental importance. It is an essential step for many
MRI analyses, for example in the diagnosis of many patholo-
gies, and it is an early step in functional MRI (fMRI) study
pipelines. To reduce the human time consumption needed
for a manual segmentation process, different fully automated
pipelines have been developed (Despotovi¢, Goossens, &
Philips, 2015). The vast majority of these tools apply an atlas-
based (or multi-atlas-based) segmentation strategy (Cabezas,
Oliver, Lladd, Freixenet, & Bach Cuadra, 2011), in which a tar-
get volume is registered with one or several templates built
from manual annotations. However, due to the high inter-
subject brain variability, these procedures often lack of seg-
mentation accuracy on brain structure or tissue boundaries
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(Klauschen, Goldman, Barra, Meyer-Lindenberg, & Lunder-
vold, 2009; Klein et al., 2017; Lerch et al., 2017; Wenger et
al., 2014). In addition, those approaches are time consuming
and computationally intensive.

Recently, Deep Learning (DL) brought substantial advance-
ments in the fields of computer vision (Voulodimos, Doulamis,
Doulamis, & Protopapadakis, 2018) and medical image anal-
ysis (Shen, Wu, & Suk, 2017; Litjens et al,, 2017). Nu-
merous DL-based algorithms that match, or even outperform,
atlas-based segmentation have been proposed (Akkus, Gal-
imzianova, Hoogi, Rubin, & Erickson, 2017). However, the
common strategy they adopt is to partition the volume in
2D (Roy, Conijeti, Navab, & Wachinger, 2018) or 3D patches
(Fedorov et al., 2016; Rajchl, Pawlowski, Rueckert, Matthews,
& Glocker, 2018; Dolz et al., 2018; Wachinger, Reuter, & Klein,
2018), process them separately, and aggregate the results
to obtain the whole brain segmentation. While this paradigm
simplifies the problem from a technical point of view, it intro-
duces important limitations into the analysis, as patch-based
methods mostly exploit local spatial information while ignor-
ing “global” cues, such as the absolute and relative position
of different brain structures, since each patch is segmented
independently from the others.

Different works recently discuss the potential improvements
of removing the partitioning of the volume (McClure et al.,
2018; Wachinger et al., 2018). Such volumetric approach
has already been applied to MRI segmentation of prostate
(Milletari, Navab, & Ahmadi, 2016), heart atrium (Savioli, Mon-
tana, & Lamata, 2018), and proximal femur (Deniz et al,,
2018), but not yet in the context of brain segmentation - where
it could prove particularly useful given the complex geometry
and the variety of structures characterising the brain anatomy.
In this work, we investigate such hypothesis by introducing
the first DL-based full-volume approach to MRI brain segmen-
tation, comparing its performance with respect to state-of-the-
art patch-based approaches.

Methods
Model Architecture

Aiming at exploiting at best the global spatial information con-
tained in MRI data, we design a deep convolutional neu-
ral network able to tackle the brain segmentation problem
in a volumetric manner - which we will refer to as fully-
volumetric“. This is accomplished exploiting an end-to-end
encoding-decoding structure, where only convolutional blocks
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Figure 1: Overview of the proposed segmentation method. The model is trained on 900 raw T1,, volumes and the associated
relabelled FreeSurfer segmentation, while the testing is performed by feeding the NIfTI data to the model.

are used. This delivers a whole brain MRI segmentation in
~5-10 seconds on a desktop GPU. The model architecture
and the proposed learning framework are shown in Figure 1.

Inspired by Ronneberger, Fischer, and Brox (2015) and
Cicek, Abdulkadir, Lienkamp, Brox, and Ronneberger (2016),
we propose a deep encoder-decoder architecture with six 3D
convolutional blocks, arranged in increasing number on three
layers. Since a whole volume is considered as an input, the
feature maps extracted by such convolutional blocks are not
limited to patches but span across the entire volume. This
allows each block to capture the content of the whole brain
MRI, greatly increasing the amount of context provided to
each subsequent block, thus supporting the learning of both
local and global spatial features. Moreover, instead of max-
pooling, convolutions with stride are used as a dimensionality
reduction method - allowing the network to learn the optimal
downsampling strategy starting from the extracted features.
Finally, skip connections are used along with tensorial sum
(instead of concatenation) to improve the quality of the seg-
mented volume, while limiting significantly the number of pa-
rameters (Quan, Hildebrand, & Jeong, 2016).

Training and Testing Data

We evaluate our model’s performance on 947 out-of-the-
scanner volumes (i.e., reconstructed DICOM images) col-
lected in more than 10 years by the Centre for Cognitive Neu-
roimaging (CCNi, Institute of Neuroscience and Psychology,
University of Glasgow, UK) using a T1-weighted (T1y,) 1 —mm
isotropic MPRAGE protocol. We use 900 of these volumes
for training purposes, 11 for validation and the remaining as
test set. Manually annotating such a large database would
prove exceptionally time-consuming. However, several works
report that labels obtained using automated pipelines can be
exploited to train models that perform the same (Rajchl et al.,
2018), or even better (Roy et al., 2018), than the automated
pipeline itself. For this reason, we train our model on auto-
matic segmentations obtained by FreeSurfer (Fischl, 2012).
Focusing on the requirements of most real case scenarios, we
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relabel the data following the seven classes considered in the
MICCAI MRBrainS13 (Mendrik et al., 2015) and MRBrainS18
challenges, i.e., grey matter, basal ganglia, white matter, cere-
brospinal fluid, ventricles, cerebellum and brainstem. Each
training pair is therefore composed by the unprocessed MRI
scan, a set of raw images turned into a neck-cropped NIfT! vol-
ume using dcm2niix (Li, Morgan, Ashburner, Smith, & Ror-
den, 2016) - and the result of the FreeSurfer cortical recon-
struction process recon-all after the aforementioned rela-
belling.

Results

We compare the proposed method with other CNN-based so-
lutions: the well-known 2D-patch-based U-Net (Ronneberger
et al., 2015), its 3D variant (Cigek et al., 2016), and the state-
of-the-art architecture QuickNAT (Roy et al., 2018) - which
leverages the aggregation of three slightly modified U-Net ar-
chitectures (trained on coronal, sagittal, and axial MRl slices,
respectively).

The learning effectiveness of the models is quantitatively
evaluated exploiting Dice Coefficient and 95" percentile
Hausdorff Distance (Figure 2), using FreeSurfer segmentation
as a reference. The comparison shows that our model, de-
spite provided with far less parameters, outperforms the oth-
ers in terms of both metrics - especially in the case of struc-
tures such as basal ganglia and ventricles, whose segmen-
tation becomes harder if conducted on patches (due to their
similarity to other structures or tissues). Moreover, we evalu-
ate our model generalisation capability by comparing the ob-
tained segmentation against the FreeSurfer ground truth our
method is trained on. In most cases (some of which are re-
ported in Figure 3), and in absence of systematic errors in
the training ground truth, our model qualitatively outperforms
FreeSurfer atlas-based segmentation.

Conclusion

In this work, we trained and tested a CNN tackling the brain
MRI segmentation problem in a fully-volumetric fashion. Ex-
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Figure 2: Dice Similarity Coefficient and 95" percentile Hausdorff Distance computed with respect to FreeSurfer segmentation
(test set). 2D-patch-based methods - trained respectively on longitudinal, sagittal and coronal view - are coloured in red, green,
blue; the view-aggregation method is coloured in light grey, the 3D-patch-based in pink, and the proposed method in orange.
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Figure 3: Raw T1,, scan (left), FreeSurfer segmentation (middle), and the result produced by our model (right) - sagittal,
coronal, and longitudinal view, respectively. Cases of white matter over-segmentation are highlighted by yellow circles, while
cases of white matter under-segmentation are highlighted by turquoise circles. The proposed method outperforms FreeSurfer
atlas-based segmentation in terms of accuracy (best viewed in electronic format).
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ploiting Dice Similarity Coefficient and 95" percentile Haus-
dorff Distance, we have shown that such model outperforms
the state of the art in terms of learning effectiveness. More-
over, we proved our model strong generalisation capability by
qualitatively assessing its superior performance with respect
to the data it was trained on (FreeSurfer atlas-based segmen-
tation).
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