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Abstract: 

To reach to objects, humans rely on relative positions 
of target objects to surrounding objects (allocentric) as 
well as to their own bodies (egocentric).  Previous 
studies demonstrated that scene configuration and 
object relevancy to the task modulates the combination 
weights of allocentric and egocentric information. 
Egocentric coding for reaching is studied extensively; 
however, how allocentric information is coupled and 
used in reaching is unknown. Using a computational 
approach, we show that clustering mechanisms for 
allocentric coding combined with causal Bayesian 
integration of allocentric and egocentric information 
can account for the observed reaching behavior. To 
further understand allocentric coding, we propose two 
strategies, global vs. distributed landmark clustering 
(GLC vs. DLC). Both models can replicate the current 
data but each has distinct implications. GLC efficiently 
encodes the scene relative to a single virtual reference 
but loses all the local structure information. In contrary, 
DLC stores more redundant inter-object relationship 
information. Consequently, DLC is more sensitive to the 
changes of the scene. Further experiments must 
differentiate between the two proposed strategies.  

Keywords: reference frames; scene configuration; 
clustering; statistical ensemble; causal Bayesian inference 

Introduction 

Previous studies demonstrated that humans combine 
allocentric and egocentric information when reaching 
toward visual targets (Byrne & Crawford, 2010; 
Klinghammer, Blohm, & Fiehler, 2015, 2017). While a 
vast number of studies investigated how egocentric 
reference frames are used in movement planning, little 
is known about how humans incorporate allocentric 
information in movement planning.  

To this aim, a series of experiments investigated the 
role of allocentric information in reaching 
(Klinghammer et al., 2015, 2017). Participants were 
asked to memorize a scene configuration (encoding). 
After a short delay, a new scene appeared and 
participants were instructed to reach to missing object 

position (decoding). Figure 1 illustrates the task 
procedure.  

 
Figure 1. Task procedure, adapted from (Klinghammer et 

al., 2015).  
To change the integrity of allocentric information, 

sometimes in the decoding scene objects were shifted 
(horizontally), either in the same or different directions. 
Figure 2 shows examples of the encoding and 
decoding scenes. In addition, the number of shifted 
objects varies; either all the objects in the scene were 
shifted or only a subset (e.g. 1 out 5 or 3 out 5) were 
shifted. We observed that shifting the objects in 
opposite direction or shifting only a subset of objects 
as opposed to the whole group of objects resulted in 
lower reliance on the allocentric information. That is 
the shift in reaching end points were smaller for 
conditions that violated the scene consistency. While 
shifting objects in the same direction or shifting all the 
objects together resulted in higher reaching end point 
biases. In addition, participants only considered the 
shifts of the objects that were potential future targets 
(relevant objects, RO) and almost ignored the changes 
in the configuration of the rest of the objects (irrelevant 
objects, IO). Finally, we observed that violating scene 
consistency, also, increased movement variability. 
Whereas this data provides clear evidence that 
contextual factors of the scene modulate the 
combination weights of egocentric and allocentric 
information, the underlying mechanisms of allocentric 
coding is unknown. 

To this aim, we propose two chunking/clustering 
approaches for allocentric landmark coding. Clustering 
is a suggested method to compress the information of 
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complex scenes (Lew & Vul, 2015). These models are 
used to reconstruct the memorized scene and casual 
Bayesian inference was used to identify the 
consistency between the memorized scene and the 
current scene. Thus, egocentric and allocentric 
information are combined using causal Bayesian 
integration. Through simulations, we demonstrate that 
both models can replicate the current experimental 
data, while each model has distinct implications. 

 

 
Figure 2. One example of encoding scene and two different 

decoding scenes. RO same: ROs are shifted in the same 
direction, and RO+IO diff: ROs and IOs are shifted in 

different directions. adapted from (Klinghammer et al., 2017). 

 

Materials and Methods 

Modeling the allocentric coding 

Similar to the experimental setup, we included two 
phases in our model: encoding and decoding. In the 
encoding phase the goal is to memorize the scene 
configuration. Similar to suggested mechanisms in the 
visual working memory literature, we use chunking or 
clustering to compress the amount of information of 
the complex scenes (Lew & Vul, 2015) and propose 
two modeling paradigms: global versus distributed 
allocentric landmark coding. The former encodes the 
scene by creating a global landmark (cluster) and 
calculates the distance of objects from this point. The 
latter encodes the position of the target using 
Barycentric coordinates relative to a distributed set of 
landmark points (object clusters). At the decoding 
phase, the goal is to infer the position of the target 
from a new scene (allocentric) and remembered 
information from encoding (egocentric). To make this 
inference, the global model combines the egocentric 
and the new scene’s global cluster points to 
reconstruct target position, while the distributed model 
combines the reconstructed target position from the 
new scene’s clusters and encoding Barycentric 
coordinates with its remembered egocentric position. 
In both paradigms, causal Bayesian integration would 
be used to infer the reliability of allocentric information 
and its contribution in final estimation of the missing 
target position. Following demonstrates the 
mathematical implementation of our proposal. 

Encoding 

The main challenge in the encoding is to memorize 
the scene configuration given the limited memory 

resources. We are proposing two compression 
mechanisms: global landmark clustering (GLC) and 
distributed landmark clustering (DLC). We assumed 
that the internal representation of the objects in the 
brain can be modeled as a Gaussian distribution.  

 
Global landmark clustering (GLC) 

GLC aims to represent the scene configuration with 
the least amount of resources. This can be achieved 
by coding the distance of all the objects with regard to 
the center of the mass of the collection of all the 
objects. Based on the assumption that the objects 
have Gaussian distributions, the center of mass (CP) 
can be calculated as a weighted summation of the 
object positions. With higher weights assigned to ROs 
compared to IOs. To summarize the scene 
configuration, one should calculate the distance vector 
of each object from the central point. Since all the 
computations are linear combination of Gaussian 
distributions, both CP and distance vectors have 
Gaussian distributions. Storing CP and distance 
vectors supplies enough information to reconstruct the 
scene configuration.  

 
Distributed landmark clustering (DLC) 

While GLC provides a framework to store scene 
configuration with the least amount of resources, it 
ignores all the local statistical structure. In addition, 
GLC is not sensitive to the relative distances of objects 
with regard to each other. It has been shown that 
humans rely less on the far visual landmark. 
Therefore, DLC aims at restoring the local statistical 
structure and encodes the positions of the possible 
target with regards to local clusters of objects. One 
approach to create local clusters is to use familiar 
shapes such as triangles or rectangles. In this study 
we chose triangles and created Barycentric coordinate 
systems to memorize the scene configuration. Using 
generalized Barycentric coordinates we can generalize 
our model to other shapes as well.  

Let us assume 𝑇 = [𝑇1 … 𝑇𝑛𝑡] is the set containing all 

the triangles (𝑛𝑡 triangles) created based on the scene 

configuration. Therefore, each 𝑇𝑗 ∈ 𝑌𝑗 = [𝑦𝑖𝑗]𝑖=1,2,3 

where 𝑖 is the vertex’s ID and 𝑗 is the triangle’s ID. We 
can, then, calculate the barycentric coordinates of the 
target object (𝑋) for each triangle: 𝑋 = Λ𝑗 ∗ 𝑌𝑗 =

∑ 𝜆𝑖𝑗 ∗ 𝑦𝑖𝑗, where Λ𝑗 = [𝜆𝑖𝑗]𝑖=1,2,3. Thus, using this 

method, 𝑋 is coded 𝑛𝑡 times.  
The goal in the encoding phase is to calculate and 

store the Barycentric coordinates of the targeted 

object; 𝑃(Λ𝑗|𝑋, 𝑌𝑗). Using Bays theorem: 

 
 𝑃(Λ𝑗|𝑋, 𝑌𝑗) =

𝑃(X,𝑌𝑗|Λ𝑗)∗𝑃(Λ𝑗)

𝑃(𝑋,𝑌𝑗)
 

(1) 

Since we assumed that objects are having Gaussian 

distribution, we can write 𝑃(X, 𝑌𝑗|Λ𝑗) in the form of: 
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 𝑃(X, 𝑌𝑗|Λ𝑗) = 𝒩([

𝑎
𝜇𝑌𝑗

] , [
𝐴 𝐶

𝐶𝑇 Σ𝑌𝑗

])  
(2) 

Employing conditional probability of Gaussian 
distributions, we have: 
 𝜇X|Λ𝑗,𝑌𝑗=𝑦 = 𝑎 + 𝐶 ∗ Σ𝑌𝑗

∗ (𝑦 − 𝜇𝑌𝑗
) (3) 

 
 ΣX|Λ𝑗,𝑌𝑗=𝑦 = 𝐴 − 𝐶 ∗ Σ𝑌𝑗

−1 ∗ 𝐶𝑇  

 

(4) 

Thus, 𝑎, 𝐴, 𝐶 can be derived as: 
 𝑎 = Λ𝑗 ∗ 𝜇𝑌𝑗

 (5) 

 𝐶 =  Λ𝑗 ∗ Σ𝑌𝑗
 (6) 

 𝐴 =  Λ𝑗 ∗ (Σ𝑌𝑗
+ Σ𝑌𝑗

𝑇 ) ∗ Λ𝑗
𝑇 . (7) 

Therefore, by storing 𝑇 and Λ𝑗 ’s all the information 

regarding scene configuration and position of the 
targeted object can be retrieved later.  

Decoding 

In the decoding phase the goal is to estimate the 
position of the missing object based on the current 
scene configuration (𝑃(�̌�𝑁|𝑥1́ … �́�𝑁−1), where �̌�𝑁 is the 

estimated position of the missing object and 𝑥𝑖́   is the 
positions in the current scene). Here, one first needs to 
use the memorized information from the encoding to 
reconstruct the scene configuration and then identify if 
the current scene in the decoding represents the same 
scene (c = 1) as before or if they are different scenes 
(c = 2). Finally, the missing object position should be 
estimated by combining allocentric and egocentric 
information. It is worth noting that, since egocentric 
information is fixed the whole time, we assumed that 
the CP in GLC and the possible target position in DLC 
is stored in egocentric coordinates. 

Therefore, similar to (Körding et al., 2007), the 
problem can be formulated as: 

 
 �̌�𝑁 =  𝑝(𝑐 = 1|𝑥1́ … �́�𝑁−1)�̌�𝑁,𝑐=1 +  

(1 − 𝑝(𝑐 = 1|𝑥1́ … �́�𝑁−1))�̌�𝑁,𝑐=2 

(8) 

, where �̌�𝑁,𝑐=1 represents the position of the missing 

object (target) when one is certain that encoding and 
decoding phase represent the same scene. Similarly, 
�̌�𝑁,𝑐=2 is the estimation for different scenes in the 

encoding and decoding phase. 
 

Reconstructing scene configuration 

In GLC, if the CP is recovered the whole scene can 
be reconstructed, therefore the problem can be written 

as: 𝑃(𝐶�̌�|𝑥1́ … �́�𝑁−1, 𝑟1 … 𝑟𝑁−1) = 𝑃(𝐶�̌�|𝐶�́�), Where 𝐶�́� 

is a vector of all the central position estimations (𝐶�́� =

 [𝐶𝑃1
́ … 𝐶�́�𝑁−1]) and 𝐶�́�𝑖 =  �́�𝑖 − 𝑟𝑖. Since both �́�𝑖 and 𝑟𝑖 

have Gaussian distribution, 𝐶�́�𝑖 has Gaussian 
distribution. The task is to estimate the distribution of 
the CP based on the predicted CPs provided by each 
individual object in the scene. This problem is similar 
causal inference in multisensory integration. If the two 
scenes are related the memorized information and the 

current information should be integrated and 
segregated otherwise. We deployed a similar 
procedure as (Körding et al., 2007) to build our causal 
Bayesian integration. Therefore, here we only provide 
our final analytical solutions to the relevant 
probabilities and not the overall procedure. To solve 
equation (8), three components should be calculated 
and in the following, we briefly explain our solution for 
each component. 

 
Estimating the probability of the similar scenes 

The probability of common cause can be written as: 

𝑝(𝑐 = 1|𝐶�́�) =
𝑝(𝐶�́�|𝑐 = 1)𝑝(𝑐 = 1)

𝑝(𝐶�́�|𝑐 = 1)𝑝(𝑐 = 1) + 𝑝(𝐶�́�|𝑐 = 2)𝑝(𝑐 = 2)
 

(9) 

 

, where 𝑝(𝑐 = 1) = 𝑝𝑐𝑜𝑚𝑚𝑜𝑛. For 𝑝(𝐶�́�|𝑐 = 1) we 

obtain: 

𝑝(𝐶�́�|𝑐 = 1) = ∭ 𝑝(𝐶�́�|𝐶𝑃𝑒𝑔𝑜)𝑝(𝐶𝑃𝑒𝑔𝑜)𝑑𝐶𝑃𝑒𝑔𝑜 (10) 

 
It is worth noting that, when there is a common 

cause, 𝐶𝑃𝑖
́ s are correlated and the correlation can be 

calculated based on the encoding assumption. All the 
factors in the integral are Gaussian and therefore there 
is an analytical solution: 

𝑝(𝐶�́�|𝑐 = 1) =
1

√(2𝜋)𝑘−1 ∗ det(Σ) ∗ ∑ Λ𝑖𝑗𝑖,𝑗

 

∗ exp (−0.5(∑ Λ𝑖𝑗𝐶𝑃𝑖
́ 𝐶𝑃𝑗

́

𝑖𝑗

− (
∑ Λ𝑖𝑗𝑖,𝑗 (𝐶𝑃𝑖

́ + 𝐶𝑃𝑗
́ )

2√∑ Λ𝑖𝑗𝑖,𝑗

)

2

)) 

(11) 

, where Λ =  Σ−1and Σ is the covariance matrix of 

𝐶𝑃𝑖
́ s. 

For 𝑝(𝐶�́�|𝑐 = 2), we note that 𝐶𝑃𝑖
́ ’s are independent 

and thus we obtain:  

𝑝(𝐶�́�|𝑐 = 1) =  ∏ ∫ 𝑝(𝐶𝑃𝑖
́ |𝐶𝑃𝑒𝑔𝑜)𝑝(𝐶𝑃𝑒𝑔𝑜)𝑑𝐶𝑃𝑒𝑔𝑜 (12) 

Since all these distributions are Gaussian, we can 
find an analytical solution: 

𝑝(𝐶�́�|𝑐 = 1)

=  ∑
1

√2𝜋(𝛿𝐶𝑃𝑖́
2 + 𝛿𝐶𝑃𝑒𝑔𝑜

2 )

exp (−0.5(
(𝐶𝑃𝑖

́ − 𝜇𝐶𝑃𝑒𝑔𝑜
)2

𝛿𝐶𝑃𝑖́
2 + 𝛿𝐶𝑃𝑒𝑔𝑜

2 )) 

(13) 

, where 𝜇𝐶𝑃𝑒𝑔𝑜
 and 𝛿𝐶𝑃𝑒𝑔𝑜

2  are the mean and standard 

deviation of CP estimation from encoding. Similarly, 

𝐶𝑃1
́ and 𝛿𝐶𝑃𝑖́

2  are the estimated CP position and the 

variability of this estimation from decoding. 
 

Estimating the position of the missing object 
To finally estimate the position of the missing object, 

one needs to calculate the position estimations for 
when one is certain that the two scenes are related 
(C=1) or not related (C=2).  

When one is certain that the two scenes are related, 
the position can be estimated using  
Bayesian integration. Since all the position estimations 
from all objects are correlated and therefore based on 
(Winkler, 1981) the solution is as following: 
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𝐶�̌�𝑁,𝑐=1 = 𝑒′Σ−1𝐶�́�/𝑒′Σ−1𝑒 (14) 
 

, where 𝑒 is a vector of ones, Σ is the covariance 

matrix of 𝐶𝑃𝑖
́ ’s. Similarly, when one is certain that the 

two scenes are not related, the segregation is selected 

and therefore 𝐶�̌�𝑁,𝑐=2 = 𝐶𝑃𝑒𝑔𝑜. 

Similar procedures can be used for the DLC. 
 

 Model predications and implications 

As expected both proposed model could replicate 
the human behavior. Similar to  (Klinghammer et al., 
2017), allocentric weight is defined as the regression 
of the amount of shift in the final reach error to the 
expected shift in end point reach error for shifted 
allocentric information. For instance, if all the objects 
are shifted 5 cm to the right, the predicted end point 
reach error for allocentric information should be also 5 
cm. As Figure 3 illustrates, violating the scene 
coherency modulated the allocentric weight. 
Specifically, when all the objects shifted coherently, 
participants relied on allocentric information the most 
and decreased their reliance as the number of shifted 
object decrease. But this is only valid for ROs. In other 
words, only the changes in the scene imposed by ROs 
were considered in the reaching movements.  

 

 
Figure 3. Both GLC and DLC can replicate the measure 

allocentric weight. The numbers beside the RO/IO represent 
the number of shifted objects; e.g. RO-1: one relevant object 
was shifted. 

 

While both models predict human behavior, each 
has distinct implications. GLC encodes the statistical 
structure in a very compact format. However, it causes 
the loss of the local structure information. This means 
that when the overall structure of the scene remains 
intact, such as magnification of the scene, GLC 
predicts the same position for the missing object even 
though the surrounding objects are shifted. On the 
other hand, DLC requires more resources to store 
some of the local structures. This added complexity 
can provide higher sensitivity to the changes of the 
scene. This tradeoff can be taken into account to 
choose different clustering strategies for task relevant 
and task irrelevant objects. For instance, one can use 
the GLC to memorize the overall structure of the 
irrelevant objects. While a more detailed approach 
such as DLC would be more beneficiary to memorize 

the task relevant objects configuration. Future 
experiments can shed light on how humans select 
between these strategies.    
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