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Abstract: 

Learning from experience is essential to the 
optimization of behavior. In particular, we learn from 
past choices and outcomes to infer the predicted values 
of the actions to be taken. Then based on the values, we 
may select an informed choice. However, despite the 
many neural correlates identified, we still do not have a 
clear picture for how values are computed and 
translated into informed behavior. Here, we trained 
head-fixed mice to perform a two-armed bandit task. 
Animals based their decisions on past choices and 
reinforcements, consistent with having an internal 
representation of action values.  To determine the 
causal contributions of the medial prefrontal cortex, we 
tested the animals before and after an excitotoxic lesion 
of the medial secondary motor cortex (M2). We found 
that unilateral M2 lesion led to side-specific effects on 
the animal’s ability to learn from past choices. To 
quantify the decision-making process, we fitted the 
animal’s choice behavior with Q-learning models to 
extract learning parameters such as learning rate, 
forgetting rate, and inverse temperature. Altogether, the 
results provide insights into the causal involvement of 
mouse mM2 in value-based decision making. 

Keywords: value-based decision making; medial 
prefrontal cortex; reinforcement learning 

Introduction 

The assignment of values to different actions and 
situations is a core component of reinforcement 
learning and decision-making. Therefore, it is not 
surprising that a distributed circuitry involving many 
brain regions have been implicated in the calculation, 
representation, and use of values (Corrado and Doya, 
2007; Lee et al., 2012). The medial prefrontal cortex 
(mPFC) is thought to a final common path for 
integrating and comparing value signals for action 
selection (Levy and Glimcher, 2012).  

Bilateral lesion or inactivation of rodent medial 
secondary motor cortex (M2) impairs the learning and 
flexible use of reward-guided choices (Makino, 2017; 
Siniscalchi, 2016; Sul, 2011), which are essential to 
update estimated values of action. 

However, the previous studies had two 
shortcomings. One, M2 was silenced for both 
hemispheres. Deficits due to inability to learn from 
rewarded and/or unrewarded choices cannot be easily 
dissociated. Two, in an environment with changing 
volatility, reward probabilities may be stable or fast-
changing, and it is known that an agent may adjust the 
learning rate to match the volatility of the environment. 
The contribution of M2 to learning rate adjustment is 
unclear. Here, using unilateral excitotoxic lesion, we 
characterized the causal contribution of M2 on learning 
from past choices in an environment with changing 
volatility. 

Results 

Animals based their decisions on past 
choices and reinforcements 

Head-fixed mice were trained on a dynamic foraging 
task based on a two-armed bandit design. For each 
trial, a mouse would wait for an auditory cue and then 
make a left or right choice by tongue lick. The outcome 
is based on the reward probabilities (e.g. “10:70”: 10% 
chance to receive water for a left choice; 70% for right, 
Figure 1A). Animals would perform a number of trials, 
until the reward probabilities switch (e.g., “70:10”). The 
switching criterion is 10 trials with choices on the high-
probability side plus a random number. The reward 
probabilities would continue to switch until the end of 
the session. Animals thus have to continually learn 
from its past choices and outcomes to maximize the 
number of rewards in the task.  
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In the example session involving two sets of reward 
probabilities, animal performed more than 400 trials, 
including 17 reversals (Figure 1). Animals chose the 
high-probability side more frequently and, following a 
block switch, would quickly switch their preferred 
action. Actions followed by rewards were more likely to 
be subsequently selected, as indicated by a logistic 
regression analysis (data not shown). 

 

Figure 1: Schematic representation of task design and 
performance of a mouse in one behavioral session 
 

Because switches occur after varying numbers of 
trials, we could characterize the animal’s choice 
behavior in situations with different degrees of 
volatility. Animals reversed slower after a long block (> 
40 trials before block switch), relative a short block 
(<25 trials, Figure 2a-b), suggesting that they are 
sensitive to the volatility of the environment and adjust 
their current learning rate accordingly. 

In other sessions, animals were tested on six 
different sets of reward probabilities including 70:10, 
70:30, 30:10, 30:70, 10:30, and 10:70. Animals were 
quicker to switch when the reward probability 
difference is greater (i.e., quicker switch from 70:10 to 
10:70 compare to 10:30; Figure 2c), indicating that 
they based their decisions on past choices and 
reinforcements, consistent with having an internal 
representation of action values. 

 

 
Figure 2: The mean ± s.e.m) probability for choosing 
the different sides for trials around a block switch 
(n=20 mice) for different block lengths and different 
reward rates.  
 

After M2 lesion, animals were quicker to 
switch contralateral to lesion side 

Ibotenic acid lesion was performed after behavioral 
testing for at least 7 sessions. After two weeks of 
recovery, the animals (n=6) were tested again. 
Animals with unilateral lesions were slower in 
switching to the ipsilateral side compared to their pre-
lesion data (Figure 3a-b). By contrast, they were 
quicker in abandoning the ipsilateral side when the 
associated reward probability was reduced. 
Additionally, block length influence on their switch was 
reduced, suggesting diminished sensitivity to volatility 
(Figure 3c). These results suggest either reduced 
learning from rewarded contralateral actions or 
facilitated learning from unrewarded ipsilateral actions.  

 

 
Figure 3: Lesioned area and lesion results (n=6) 
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Discussion and Future Work 

The results showed that a unilateral M2 lesion led to 
side-specific effects on the animal’s ability to learn 
from past choices.  

We fitted the pre-lesion data to different Q-learning 
algorithms and found that a DFQ-learning model in 
which the learning rate for unrewarded actions is the 
same as the forgetting rate provided the best fit 
(Figure  4) and captured the choice behavior (Figure 
1e). This procedure will allow us to quantitatively 
extract the decision-related parameters including 
decision value, chosen values, action values, reward 
prediction error, learning rate, and inverse 
temperature. By comparing with the decision-related 
parameters extracted from the lesion data, we may 
gain further insights into the causal contribution of 
medial M2 on learning from past choices in a volatile 
environment. 

Methods 

Two armed bandit task 

Six adult male mice with a C57Bl/6J genetic 
background were used in the presented data. The 
mice were placed in a modified acrylic tube and held 
head-fixed during the bandit task by fastening their 
surgically implanted head plate to a stainless-steel 
bracket. In order for the mice to be motivated to 
perform the task, subjects were water restricted. Water 
was only provided in the form of rewards in a single 
daily training session. 

Before each trial, the mouse was required to 
suppress licking for a random duration. Trial would 
begin with an auditory cue (5 kHz, 500 ms). The 
mouse could indicate its response with a tongue lick to 
the left or right spout. Depending on the reward 
probabilities, the outcome might be 2 μL of water. At 3 
s after the outcome, a no-lick period began until the 
next trial. Upon licking the high-probability side for ten 
trials plus a randomly selected number of trials, the 
reward probabilities would switch. 

Excitotoxic lesion 

A volume of 300 nL of the ibotenic acid (505024; 
Abcam) solution was injected into M2 (left or right 
medial secondary motor region: AP: +1.5 mm; ML: 
±0.3 mm; DV: 0.3 mm, Figure 3A).  Three mice 
received the injections on the M2 region in the left 
hemisphere and three on M2 region in the right 
hemisphere. 
 

Reinforcement Learning Model 

To model the learning process, we used Q-learning 
algorithms (Ito and Doya, 2009). The action value Qi 

(t), which is the value for an action i ∈ {𝐿, 𝑅}, is 
updated by the following: 

 
 𝑄𝑖(𝑡 + 1) = 
 

𝑄𝑖(𝑡) + 𝛼𝑅𝑖   (𝑟(𝑡) − 𝑄𝑖(𝑡))    i𝑓 a(𝑡) = i, 𝑟(𝑡)=1 

 𝑄𝑖(𝑡) + 𝛼𝑈𝑅𝑖(𝑟(𝑡) − 𝑄𝑖(𝑡))  i𝑓 a(𝑡) = i, 𝑟(𝑡)=0  

(1 − 𝜆1) 𝑄𝑖(𝑡)        i𝑓 a(𝑡) ≠ i, 𝑟(𝑡)=1 

(1 − 𝜆2) 𝑄𝑖(𝑡)      i𝑓 a(𝑡) ≠ i, 𝑟(𝑡)=0  
 
 

where a(t) and r(t) are the action and reward at the t th 

trial. The parameter 𝛼𝑅𝑖   is the learning rate for the 

rewarded selected action, 𝛼𝑈𝑅𝑖 is the learning rate for 

the unrewarded selected action and 𝜆1, 𝜆2 are the 
forgetting terms for unselected action rewarded and 
unrewarded consecutively. 
 
Using the action values, the prediction of the choice at 
trial t was given by the following: 

      𝑃(𝑎(𝑡) = 𝐿) =
1

1 + 𝑒−𝛽(𝑄𝐿(𝑡)−𝑄𝑅(𝑡))
 

 
 

 
 

Figure 4: Summary of the different models 
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