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Abstract: 

Deep Convolutional Neural Networks (CNNs) are lauded 
for their high accuracy in object classification, as well as 
their striking similarity to human brain and behaviour. 
Both humans and CNNs maintain high classification 
accuracy despite changes in the scale, rotation, and 
translation of objects. In this study, we present images 
of novel objects at different scales and compare 
representational similarity in the human brain versus 
CNNs. We measure human fMRI responses in primary 
visual cortex (V1) and the object selective lateral 
occipital complex (LOC). We also measure the internal 
representations of CNNs that have been trained for large-
scale object recognition. Novel objects lack consensus 
on their name and identity, and therefore do not clearly 
belong to any specific object category. These novel 
objects are individuated in LOC, but not V1. V1 and LOC 
both significantly represent size and pixel information. In 
contrast, the late layers of CNNs show they are able to 
individuate objects but do not retain size information. 
Thus, while the human brain and CNNs are both able to 
recognise objects in spite of changes to their size, only 
the human brain retains this size information throughout 
the later stages of information processing. 
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Introduction 

Object recognition areas of the brain are tolerant to 
changes in size, position and pose (Li & DiCarlo, 2010; 
Nishimura, Scherf, Zachariou, Tarr & Behrmann, 2015). 
Deep Convolutional Neural Networks (CNNs) are also 
known to maintain their high object recognition 
accuracy with changes in object size, position and pose 
(Krizhevsky, Sutskever & Hinton, 2012). Size, position 
and other category-orthogonal properties have been 
shown to be decodable along the monkey object 
recognition pathway, and also along layers of a CNN, 
for known objects (Hong, Yamins, Majaj & DiCarlo, 
2016). Here we investigate the similarity structure of the 

representation of novel objects presented at different 
sizes (in terms of visual field size or scale) in the brain, 
and in CNNs.  

Methods 

Stimulus Set 

The stimulus set consists of 36 images, containing 12 
novel objects (Figure 1) at 3 sizes (3.5, 7 and 11 
degrees of visual angle). These objects are selected 
from the Novel Object and Unusual Name (NOUN) 
dataset (Horst and Hout, 2016). These objects are not 
easily identified or named. Images are presented in 
greyscale on an isoluminant background, at high 
resolution in the scanner (2400 x 2400 pixels) and at 
lower resolution to the network (256 x 256 pixels). 

 

 
 

Figure 1 The stimulus set, largest scale presented 
here (of 3 scale sizes). Objects are a subselection 

from the NOUN database (Horst & Hout, 2016). 
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fMRI Experiment 

We measured responses in V1 and LOC (Figure 2) of 
23 participants (7 male, age range 23 – 37, mean age 
23.9). All participants provided written informed consent 
and the experiment was approved by KULeuven Ethics 
Committee.  
 
A neural dissimilarity matrix was computed for each ROI 
in every subject using beta weights (estimated in the 
GLM) from the voxels responding to each of the 36 
stimulus conditions. We used cross-validated 
Mahalanobis distance (Walther, Nili, Ejaz, Alink, 
Kriegeskorte & Diedrichsen, 2016) as a measure of 
neural dissimilarity. This measure is the cross-validated 
Euclidean distance normalised by the covariance of the 
training sample.  
 

 
Figure 2 ROIs measured: V1 and LOC 

 

Models 

We define 4 conceptual models that highlight different 
features of the stimulus set. Each model is a 
Representational Dissimilarity Matrix (RDM) with size 
36 x 36 (illustrated in Figure 3): 
 
A. Size – defines the relative size of stimuli over the 
three sizes (3.5, 7 and 11 degrees of visual angle).  

 
B. Identity– defines the same object across the three 
sizes. 
 
C. Shape – defines the similarity in silhouette images. 
The binary image overlap is calculated per size, and the 
difference in shape is considered the same across sizes 
(i.e., images are normalized for size). 
 
D. Pixel similarity – defines the normalised Euclidean 
distance between images. Unlike the shape model, 
values are different across different sizes. Objects 
presented at a small scale have a small difference in 
pixel similarity; larger objects have a larger difference.  
This is a low-level description that includes texture 
information, which is potentially biased in CNNs. 
 
We found some overlap between the defined models 
(significance tested using random permutations), and 

so we also ran our analysis with partial correlations. 
Size was correlated with Pixel similarity (ρ = 0.49). 
Identity was correlated with Shape (ρ = 0.40). Shape 
was correlated with Identity (ρ = 0.40) and Pixel 
similarity (ρ = 0.11, Spearman).  
 
A   B 

 
C   D 

 
Figure 3 RDMs of each of the conceptual models A. 

Size, B. Identity, C. Shape D Pixel similarity. 
Numbering of stimuli are from left to right, top to 
bottom in Fig 1, from a small to large scale. Low 
values (dark blue) indicate that stimuli are highly 

similar, high values (dark red) indicate that stimuli are 
highly dissimilar. 

 

CNNs 

We measure representational correlations in 
CaffeNet, an 8-layer CNN with 5 convolutional layers 
and 3 fully connected layers. CaffeNet is an 
implementation of AlexNet (Krizhevsky, Sutskever & 
Hinton, 2012) and is trained on the ImageNet database. 
We also measure correlations in VGG-16, a CNN with 
16 layers (13 convolutional and 3 fully connected), also 
trained on ImageNet (Simonyan & Zisserman, 2015).   
 

Results 

fMRI vs Models 

Full correlations show that in V1, all models except for 
Identity are significant (df = 22, Size: t-stat = 18.13, p < 
0.0001; id: t-stat = -2.37, p=0.99; Shape: t-stat = 2.62, 
p = 0.0078; Pix: t-stat = 13.34, p < 0.0001). In LOC, all 
models are significant (df = 22, Size: t-stat = 12.51, p < 
0.0001; Id: t-stat = 7.89, p<0.0001; Shape: t-stat = 4.07, 
p = 0.0003; Pix: t-stat = 9.90, p < 0.0001). We ran a 
repeated measures ANOVA for ROIs, models and their 
interaction as within subject variables. For full 
correlations, the main effect of ROI is significant (df = 1, 
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f stat = 9.865, p <0.0048), model is significant (df = 3, p 
< 0.0001, f-stat 168.7), and the interaction between ROI 
and models is significant (df = 3, p < 0.0001, f-stat = 
27.52). Looking at the models separately, Size and 
Pixel similarity decrease significantly from V1 to LOC 
(size: df = 22, size t-stat = 5.046, p < 0.0001, Pixel: df = 
22, t-stat = 4.6339, p = 0.0001). Identity increases 
significantly from V1 to LOC (df = 22, t-stat = -7.5409, 
p< 0.0001). Shape did not differ between ROIs (df = 22, 
t-stat = -0.8973, p = 0.3793).  

 

 
Figure 4 Full correlations between models and ROIs. 

Error bars indicate SEM. 
 

 
Figure 5 Partial correlations between models and 

ROIs. Error bars indicate SEM. 

When taking partial correlations, the only difference 
with full correlations was that Shape information was no 
longer significant in V1 or LOC. All other correlations 
remained significant and ANOVA conclusions remained 
unchanged.  

Figure 6 and Figure 7 show RDMs of V1 and LOC 
respectively. In V1, it is clear that Size and Pixel 
information are apparent. In LOC, Identity becomes 
visible through the appearance of lines that are parallel 
with the matrix diagonal. 

Models vs CNNs 

We correlate each model (Size, Identity, Shape and 
Pixel similarity) with each layer of a CNN. Looking at full 
correlations with 8-layer CaffeNet (Figure 8), Identity 
increases to above the significance threshold (red line, 
computed using random permutations) in the final fully 
connected layers. Pixel similarity is near one-to-one 

correlation with the convolutional layers, then 
decreases to the significance threshold in the final layer. 
Size and shape both start and end at the significance 
threshold in the first and last layers, peaking in the 
middle layers (layers 4 and 6 respectively).  

 

 

Figure 6 V1 RDM 

 

Figure 7 LOC RDM 

 

Figure 8 Full correlations between models and 
CaffeNet 

 
Figure 9 Partial correlations between models and 

CaffeNet 
 

Looking at partial correlations (Figure 9), we see that 
Identity increases to above the significance level in the 
final fully connected layers. Pixel similarity decreases 
from ceiling correlations in convolutional layers to the 
significance threshold in the final layer. Shape has a 
similar profile as with full correlations. Size information 
remains below the significance threshold in all layers. 
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Note that the size model does not take into account 
pixel differences, which is why it correlates near zero in 
the first layer of Figure 10, and why it correlates 
negatively in Figure 11.  

 

Figure 12 and Figure 13 show RDMs of respectively the 
first and last layer of CaffeNet (left) and VGG-16 (right). 
Common across both CNNs, we see that Pixel similarity 
is apparent in the first layer. In the last layer, Identity 
information is clearly visible. This shows that the 
networks are extremely tolerant to size changes.  

 

Discussion and Conclusions 

In CNNs, we find a high correlation with Pixel similarity 
in convolutional layers, while the last layer only shows 
a correlation with the Identity model without any 
remaining effect of Size. In contrast, Size remains 
important for object-selective areas in the human brain. 
Note that we also explored further areas in the ventral 
stream, but they did not contain reliable neural patterns 
to the novel objects in our stimulus set. 
 
We refer to our manipulation of images as size or scale, 
however it is also possible to interpret this information 
in terms of which retinal fields are activated along the 
visual pathway to assist with locating an object. This 
information is of greater relevance to the brain 
compared to CNNs.  
 
Hong et al. (2016) demonstrated that object recognition 
areas in the brain are tolerant to size, position and pose, 
and that this information increases along the ventral 
pathway. They showed that this increase is reflected in 
a 6-layer CNN with 1 fully-connected layer. The stimuli 
that they used contained known, real-world objects 
superimposed onto a naturalistic background. The 
stimuli that we used contained novel objects on an 
isoluminant grey background. We analysed the 
representations of CNNs that contained multiple (3) 
fully-connected layers, instead of a single fully-
connected layer in Hong et al. (2016). In light of these 
differences, it appears that our results differ in two 
ways: 1) size information decreases in the brain, from 
V1 to LOC and 2) size information is not preserved in 
the final layers of CNNs.   
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 Figure 12 RDM of first layer in CaffeNet (left) and 

VGG-16 (right) 
 

  
Figure 13 RDM of last layer in CaffeNet (left) and 

VGG-16 (right) 
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