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Abstract
Planning requires simulating future choices and conse-
quences. This process is costly. But, it is also useful
since it allows people to make choices in the now that
have desirable future outcomes. What is a rational way
to balance the immediate computational costs and future
benefits of planning? Here, we argue that this involves
planning to plan—adaptively deciding what actions to
plan and when to plan those actions. To formalize this
intuition, we develop the ideas of partial planning and
information-theoretic simulation costs. Together, these
allow us to define a novel Bellman objective that includes
both environmental rewards and planning costs, which
we solve using a gradient-based planning-to-plan algo-
rithm. A key prediction of our account is that when the
value of an immediate action depends on a more spe-
cific plan, the computational cost associated with that
action will be higher. To test this qualitative prediction,
we measure participant response times when solving a
Gridworld task. We find evidence for our account of plan-
ning costs, indicating that people rationally plan to plan.
Our formulation and results provide new insight into the
meta-planning processes that support the scale and so-
phistication of human problem solving.

Keywords: Planning; Bounded Rationality; Simulation; Meta-
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Introduction
People’s decisions are often informed by their long term goals.
But determining how an action in the current moment relates
to consequences in the future is computationally costly. It
requires thinking not only about the current action, but also
about future possible actions and contingencies. For exam-
ple, imagine you are currently at home and want to get to the
airport to catch a flight. How do you determine what to do right
now? What would you think about right now? Clearly, some
details are important to your current decision: When to call a
car or whether there will be traffic is very relevant. But there
are other details that, although not currently relevant, may be-
come relevant in the future. For instance, after going through
airport security, you will need to turn either left or right to get
to the flight gate. The action you take then is important, but
you do not have to commit to a specific course of action while
at home. Rather, you can reasonably wait until you arrive at
the airport before thinking through that aspect of your plan.

Put another way, you could be strategic about what actions
you plan and when you plan those actions. This is a form of
meta-planning that we call “planning to plan”.

Here, we describe a general formalism for planning to plan
that incorporates several ideas. First, based on work on plan-
ning as probabilistic inference (Todorov, 2009; Botvinick &
Toussaint, 2012), we develop the notion of a partial plan.
Partial plans are representations of what an agent will do,
but it allows for some actions to be specified in more de-
tail than other actions. This captures the intuitive notion of
thinking through certain specific decisions (e.g., when to call
a car) while remaining non-committal on other decisions (e.g.,
whether to turn left or right after security). Second, we draw on
ideas from information theoretic bounded rationality (Tishby &
Polani, 2011; Rubin, Shamir, & Tishby, 2012; Ortega & Braun,
2013) to characterize the computational costs associated with
planning. This allows us to express the cost of planning in
terms of the minimum number of bits required to re-encode
a new plan from a default plan. Finally, we treat the problem
of planning to plan as a sequential decision-making problem
in which an agent must partially plan at each timestep, taking
into account task rewards, planning costs, and future opportu-
nities to partially plan.

A key prediction of our account is that people will construct
a partial plan that maximizes task rewards and minimizes im-
mediate planning costs. In particular, if deciding what action
to take requires more specific planning, then planning costs
are higher. We test this prediction by having participants play
a simple Gridworld navigation task and measuring the amount
of time it takes them to take their first action as a function of
the optimal partial plan from their starting state. Our results
show that people are sensitive to this feature of a task, which
supports our account of planning to plan.

Background
Planning and problem solving is often understood as a form
of search over a problem representation (Newell & Simon,
1972). However, brute force search for an optimal plan is of-
ten computationally intractable, which is why computer scien-
tists have developed a range of methods to make planning
more managable. This includes methods such as heuris-
tic search (Pearl, 1984) and hierarchical planning (Sacerdoti,
1974), among many others. Meanwhile, psychologists and
neuroscientists have extensively documented the shortcuts
and simplifications that people use to efficiently organize their
thoughts and behaviors (Tversky & Kahneman, 1974; Lashley,
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1951).
Given the need to simplify planning, one might ask: What

if people strategically constructed plans that were simple
enough to use in the moment but effective enough to make
good long term decisions? Several lines of research in the
existing literature provide insight into this question. For ex-
ample, work on rational meta-reasoning in humans (Griffiths,
Lieder, & Goodman, 2015) and anytime algorithms (Dean &
Boddy, 1988) highlights how agents can make decisions while
balancing the computational costs of those decisions. Addi-
tionally, work on intertemporal representation (Trope & Liber-
man, 2003) demonstrates how people’s construal of different
aspects of the world changes as a function of time and con-
text. The work presented here attempts to develop a general
formal framework that connects these ideas and test them in
people.

Model
We first review the basic formalism for sequential decision-
making and then describe our account of partial planning,
information-theoretic planning costs, and a novel recursive
Bellman objective.

Markov Decision Processes
The standard formalism for sequential decision-making is the
Markov Decision Process (MDP) (Puterman, 1994). A ground
MDP M is a tuple 〈S,A,T,R,γ〉, which consists of a set of
states S; a set of actions A; a probabilistic transition function
T : S×A→ ∆(S); a reward function R : S×A×S→R; and a
discount rate γ ∈ [0,1) 1.

A policy, π : S → ∆(A), maps states to distributions over
actions, and the value function of a policy, V π : S→ R, is the
expected discounted cumulative reward that an agent receives
for following π from each state. The optimal value function
is the unique fixed point of the Bellman equations (Bellman,
1957), for all s ∈ S:

V ∗(s) = max
a∈A

∑
s′∈S

T a
s,s′ [R

a
s,s′ + γV ∗(s′)]. (1)

Additionally, we can define an optimal state-action value func-
tion Q∗(s,a) = ∑s′∈S T a

s,s′ [R
a
s,s′ + γV ∗(s′)], for all s ∈ S,a ∈ A.

An optimal policy π∗ is any policy π such that V π(s) = V ∗(s)
for all s ∈ S.

Partial Plans
We formalize partial plans in two steps. First, we define a “sim-
ulated” MDP, M̃, that corresponds to an agent’s model of the
actual task, M. We focus on the relationship between ground
states S and simulated states S̃, and assume that M̃ =M. This
allows us to express an agent’s plan from different states. For
instance, the simulated action distribution at simulated state s̃
from ground state s is denoted π̃(a | s̃;s).

Second, we allow an agent to control their partial policy at
a state s via a temperature assignment over simulated states

1∆(X) is the simplex over elements x ∈ X .

s̃. This captures the degree of optimal planning that an agent
engages in at each simulated state. Formally, a temperature
assignment from state s is β(·;s) : S̃ → R≥0. An assignment
defines soft-Bellman equations over simulated states:

π̃
β(a | s̃;s) ∝ exp

{
Q̃β(s̃,a;s)β(s̃;s)

}
, (2)

Ṽ β(s̃;s) = ∑
a

π̃
β(a | s̃;s)Q̃β(s̃,a;s), (3)

Q̃β(s̃,a;s) = ∑
s̃′

T a
s,s′

[
Ra

s,s′ + γṼ β(s̃′;s)
]
. (4)

Larger temperatures entail more optimal planning at a sim-
ulated state, and the interaction of temperatures over the en-
tire model results in a partial plan. The temperature assign-
ment controls how information about future rewards propa-
gates through simulated states in a model.

Information Theoretic Planning Costs

Work on information theoretic bounded rationality provides in-
spiration for our formulation of planning costs (Tishby & Polani,
2011; Rubin et al., 2012; Ortega & Braun, 2013). In particular,
we quantify the cost of a simulated partial plan π̃ in terms of
the sum of Kullback-Leibler (KL) divergences (denoted DKL)
from a default policy π̄ over all states:

C(π̃, π̄) = ∑
s̃∈S̃

DKL
[
π̃(· | s̃)||π̄(· | s̃)

]
. (5)

The KL-divergence is DKL[p||q] = ∑x p(x) log( p(x)
q(x) ) for dis-

tributions p and q with the same support (Cover & Thomas,
1991). Following previous work (Gottwald & Braun, 2019), we
set π̄ to be the uniform distribution at all states.

Planning-to-Plan Bellman Objective

We can now define the problem of planning to plan by nesting
partial planning inside a meta-planning problem that includes
planning costs:

V ∗
λ
(s) = max

β(·;s)

{
∑
a∈A

[
π̃

β(a | s;s) ∑
s′∈S

T a
s,s′

[
Ra

s,s′ + γV ∗
λ
(s′)
]]

−λC(π̃β, π̄)

}
. (6)

This modified Bellman objective extends the original Bellman
equations (Equation 1) in two ways. First, the ground action
distribution at the current state, π̃β(a | s;s), results from a plan-
ning process rather than being directly chosen. Second, plan-
ning costs are expressed through the term λC(π̃β, π̄), where
λ ∈ R is a planning cost weight. Equation 6 thus defines how
an agent should partially plan their current decision given fu-
ture partial planning.
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Figure 1: Illustration of plan specificity. (A) Partial policy (π̃(· | ·;s)), temperature allocation (β∗(·;s)), and information theoretic
planning costs (C(π̃, π̄)) when at the state on the lower left (green circle) on a grid with no obstacles. (B) In the presence of
obstacles, the decision at the lower left requires a more specific partial plan, which is more costly from an information theoretic
planning perspective. Yellow tile is an absorbing state worth +10; red tiles are -5; step costs are -0.1; γ = .95; λ = 0.01.

Partial Plan Specificity and Planning Costs

In our formulation, an agent optimizing Equation 6 is minimiz-
ing planning costs, which means they will only simulate fu-
ture decisions that are relevant to the current decision. Con-
versely, if making the current decision is contingent on a large
number of simulated future decisions, then planning costs will
be higher. Put simply, more specific planning involves greater
planning costs.

To illustrate this property, consider the simulation results
shown in Figure 1. We constructed a simple Gridworld in
which an agent navigated from the lower left corner to an ab-
sorbing goal in the upper right. When there are obstacles,
the agent needs to engage in more specific planning, which is
more costly.

Experiment
To test whether people are sensitive to plan specificity as pre-
dicted by the model, we designed a simple Gridworld path-
planning task in which the length of an optimal plan was held
constant, but the required specificity of plan was manipulated.
This was done by placing costly obstacles that blocked all but
a few shortest path to a goal (Figure 2a). To assess how much
initial planning people engaged in, we measured the amount
of time before they took their first action. Our key qualitative
prediction is that people will take longer to respond when they
must identify a more specific plan to make their first action.

Materials and Procedure

Forty participants were recruited via Amazon Mechanical Turk
to participate in our study using psiTurk (Gureckis et al., 2016).
After familiarizing themselves with the mechanics of the task,
each participant was given 48 versions of the grid in Figure 2a
that varied by six initial start states and transformations based
on the eight symmetries of a square (Figure 2b). The order
of the rounds were one of eight pre-determined random se-

quences and was counterbalanced. The yellow goal state was
worth 10 points and red squares were −5 points (5 points =
1¢ bonus). Each round began with a blank 9× 9 grid. When
participants pressed the space bar, the round was immedi-
ately loaded and actions could be taken in any of the four car-
dinal directions using the arrow keys. Initial state response
times (RTs) were recorded by comparing the time between
when the round loaded and the first action was taken.

Results

One participant was excluded from analysis due to missing
data. To assess the influence of goal distance and obsta-
cles, we ran a mixed-effects linear model with initial state log-
transformed reaction times as the dependent variable. By-
participant intercepts and round number slopes were included
as random effects, and the initial state Manhattan distance to
the goal, whether the initial state was on the side with obsta-
cles, and their interaction were included as both random and
fixed effects. This enables us to control for individual variance
as well as learning effects across the task to determine the in-
fluence of plan specificity on reaction times. Figure 2c shows
boxplots of log-transformed reaction time for the six different
starting locations.

Consistent with our account’s predictions, reaction times
were faster when participants started on the side with-
out obstacles (Fixed effect of obstacles: β = 0.29,SE =
0.04, t(81.50) = 6.95, p < .001). Moreover, not only were
people faster the closer they were to the goal (Fixed effect of
goal distance: β = 0.05,SE = 0.004, t(39.53) = 11.20, p <
.001), but the effect of distance was stronger on the ob-
stacle side (Fixed effect of interaction: β = −0.05,SE =
0.005, t(60.60) = −10.97, p < .001). This provides experi-
mental evidence that people are sensitive to plan specificity,
consistent with our model of planning to plan.
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Figure 2: (A) Gridworld used in to test the effect of specificity on partial planning (Yellow tile is a +10 goal state, red tiles are -5).
There are 227 distinct optimal paths when starting on the lower-right corner of the grid (orange lines) and only 27 when starting
at the lower-left corner (blue lines) because of the red obstacles (random simulated trajectories shown). This means partial
planning from states on the left will tend to be more computationally costly than ones on the right since it requires committing
to a more specific path at the first timestep. (B) Yellow numbers indicate the six starting states tested in the experiment. (C)
Box-plots of log reaction times on initial state by Manhattan distance to goal and whether the trials were on the side of obstacles.

Discussion
Planning is useful because it allows agents to make decisions
informed by future possibilities. But determining how future
actions and consequences influence current decisions is com-
putationally costly. We argue that agents must then be strate-
gic about what they plan and when they plan: Resource lim-
ited agents should plan to plan. Here, we have formalized the
notion of planning to plan by using partial planning and infor-
mation theoretic costs to define a novel Bellman equation. Our
account predicts that when a good decision requires a more
specific plan, planning costs will be higher. We test this qual-
itative prediction in people by measuring reaction times when
navigating Gridworlds with and without obstacles in the way
and find support for this prediction. This provides evidence
that people plan to plan.
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