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Abstract: 

In Bayesian models of perception, the magnitude of 
perceptual biases towards prior expectations depends 
on the precision of incoming sensory information – the 
more precise the sensory likelihood, the weaker the bias 
towards the prior. Perceptual biases can be quantified 
behaviorally by regression to the mean effects, wherein 
reports are biased towards the mean of previously 
presented stimuli. As for many aspects of Bayesian 
perceptual accounts, the neural bases of regression to 
the mean remain unclear. Here, we investigate how 
sensory precision influences neural representations of 
duration using behavioral modelling and EEG decoding. 
Data simulated using a Bayesian ideal observer model 
shows that regression to the mean in a duration 
reproduction task is stronger with high, compared to low 
sensory precision, providing preliminary evidence that 
sensory precision affects regression to the mean in 
Bayesian observers. Using EEG, we are also 
investigating how sensory precision affects the accuracy 
of a multivariate classifier to decode stimulus context 
based on neural responses to the same physical 
stimulus. The results of these experiments will provide 
some of the first evidence explicitly linking these key 
behavioral and neural indices of Bayesian perceptual 
perception, providing deeper understanding of one of 
the most fundamental aspects of human perception.   
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Introduction 

Bayesian brain theories suggest that perception arises 
from the integration of incoming sensory information 
with prior knowledge about its possible causes. Under 
the assumption that priors and sensory likelihoods are 
approximated by Gaussian distributions, it is postulated 
that as the precision of the sensory likelihood increases, 
a Bayesian observer will experience weaker perceptual 
bias towards the prior.  

In behaviour, perceptual biases towards the prior can 
be measured through regression to the mean effects – 
estimations of stimulus magnitude are biased towards 
the mean magnitude of previously presented stimuli. 
Such effects have been reported in many perceptual 

domains (Hollingworth, 1910), including time perception 
(also known as Vierordt’s law), and are range specific – 
the same duration will be underestimated if it is longer 
than the mean but overestimated if shorter (Jazayeri, & 
Shadlen, 2010).  

Neuroimaging evidence suggests that stimulus 
context also affects the neural response elicited by a 
stimulus. The same auditory pitch was found to give rise 
to a stronger mismatch negativity signal (MMN, elicited 
by violations in sequence regularity) when the 
underlying stimulus distribution had smaller variability 
(Garrido, Sahani, & Dolan, 2013). It has been also 
reported that sensory precision is correlated with the 
magnitude of the MMN response (Kraus et al.,1996).  

No study to date has investigated how sensory 
precision influences regression to the mean in 
behavioural and neural responses. Focusing on the 
domain of time perception, we predict that human 
observers with low sensory precision will exhibit 
stronger regression towards the mean than participants 
with high sensory precision. As participants with low 
sensory precision will experience the same stimulus 
more differently when it is presented in different 
contexts, we also predict that a classifier trained on the 
EEG data associated with the same physical stimulus 
will decode stimulus context more accurately in 
participants with low compared to high sensory 
precision.  

Methods 

Procedure 

In the EEG task and the main behavioral task 
participants are presented with stimuli drawn either 
from a range of short (5 levels between 340-626ms) or 
long durations (5 levels between 626-1152ms), in 
separate blocks of trials. During EEG recording, 
participants observe the stimuli passively. In the 
behavioral task participants reproduce the presented 
durations by pressing a button on a keyboard.  
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To estimate sensory precision, participants also 
complete a 2-interval forced choice (2IFC) task. 
Participants are presented with two durations and have 
to indicate which is longer or shorter in different blocks 
(one always being 626ms). Sensory precision is 
quantified as the difference from 626ms for which 
participants reach 75% accuracy. 

Analysis 

Behavioral analysis Participants will be divided into 
low and high sensory sensitivity groups based on their 
performance on the 2IFC task. We will use a Bayesian 
ideal observer model (Acerbi, Wolpert, & Vijayakumar, 
2012) to derive a specific numerical prediction of the 
difference in regression to the mean we expect to find 
between the two groups. Regression to the mean is 
quantified as the difference in reproduction times of the 
stimulus present in both the long and short conditions: 
626ms. We will also calculate the difference in the 
average regression to the mean effect between the two 
groups in the behavioural data. Then we will conduct an 
independent Bayesian t-test to examine whether the 
behavioural data support the prediction of the Bayesian 
observer model. 

EEG analysis After pre-processing, we perform 
multivariate pattern analysis (MVPA; Fahrenfort et at., 
2018) to decode stimulus context (long or short 
condition) based on the pattern of brain responses 
associated only with the stimulus common to the two 
contexts: 626ms. Classification is done using linear 

discriminant analysis (LDA) and classification 
performance is evaluated through a 10-fold cross-
validation.  

Preliminary results 

Using the model specified by Acerbi et al. (2012), we 
generated behavioral responses of ten simulated 
participants with high sensory precision and ten 
simulated participants with low sensory precision. The 
model-generated data shows that the 626ms stimulus 
is overestimated when presented in the long context 
and underestimated when presented in the short 
context: Mean difference = 98.57ms (SE=1.80). The 
simulated data also suggests that in Bayesian 
observers, regression to the mean is greater with high, 
compared to low sensory precision – the mean 
difference between the two simulated groups is 
59.57ms (SE=7.15). Mean model-generated responses 
are depicted in Figure 1. 

Behavioral data collected to date (N=6) supports the 
overall range effect found in the simulations – the mean 
difference in responses to the 626ms stimulus between 
the long and short condition is 99.80ms (SE=11.31). 

Finally, preliminary MVPA results (N=4) revealed that 
the classifier could distinguish stimulus context in all 
participants with AUC>0.6, reached during stimulus 
presentation. Classification performance, averaged 
over participants, is show in Figure 2.  

 
Figure 1: Results from simulations. Average responses 
of simulated participants with low sensory precision 
(red) and high sensory precision (blue). 
 

 
Figure 2: Classifier performance (area under the curve) 
across time, averaged over participants (N=4). 
 

 

200



Conclusions 

The model-based simulations provide initial support for 
our prediction that sensory precision affects regression 
to the mean. Behavioral data collected to date 
successfully replicates the range effects in regression 
to the mean reported previously and predicted by the 
model. Finally, preliminary EEG data suggests that a 
classifier can distinguish the context in which a stimulus 
is presented based solely on the patterns of the EEG 
response generated by the same physical stimulus. 
Ultimately this research will improve our understanding 
of the neural basis of perceptual biases and help 
address the question of the degree to which the brain 
engages in (approximate) Bayesian inference. 

Acknowledgments 

We would like to thank Prof Anil Seth and Dr 
Christopher Buckley for their valuable insight and 
suggestions.  This work is funded by Sussex 
Neuroscience. 

References  

Acerbi, L., Wolpert, D. M., & Vijayakumar, S. (2012). 
Internal representations of temporal statistics and 
feedback calibrate motor-sensory interval timing. 
PLoS computational biology, 8(11), e1002771. 

Fahrenfort, J. J., Van Driel, J., Van Gaal, S., & Olivers, 
C. N. (2018). From ERPs to MVPA using the 
Amsterdam decoding and modeling toolbox (ADAM). 
Frontiers in neuroscience, 12. 

Garrido, M. I., Sahani, M., & Dolan, R. J. (2013). Outlier 
responses reflect sensitivity to statistical structure in 
the human brain. PLoS computational biology, 9(3), 
e1002999. 

Hollingworth, H. L. (1910). The central tendency of 
judgment. The Journal of Philosophy, Psychology 
and Scientific Methods, 7(17), 461-469. 

Jazayeri, M., & Shadlen, M. N. (2010). Temporal 
context calibrates interval timing. Nature 
neuroscience, 13(8), 1020-1026.  

Kraus, N., McGee, T. J., Carrell, T. D., Zecker, S. G., 
Nicol, T. G., & Koch, D. B. (1996). Auditory 
neurophysiologic responses and discrimination 
deficits in children with learning problems. Science, 
273(5277), 971-973. 

201


