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Abstract
The mismatch negativity (MMN), a well-studied
electrophysiological response to irregularities in the
sensory input stream, has often been used to examine
how the brain learns the statistics of its environment.
This response has also been found to be systematically
altered in clinical populations such as patients with
schizophrenia. These deviations in electrophysiology,
however, cannot easily be linked to inter-individual
differences in cognitive processing style due to the lack
of direct behavioral readouts, which limits the paradigm’s
usefulness for cognitive science and computational
psychiatry. To bridge this gap, we present a pipeline for
inferring parameters of a generative model of learning
and inference, the Hierarchical Gaussian Filter (HGF),
given EEG recordings obtained as part of the auditory
MMN paradigm. Our pipeline includes a data-driven
feature selection step as well as a proposal for mapping
belief updates to the EEG features.
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Introduction
As part of our daily lives, we are constantly immersed in noisy
sensory information from the outside world and are required
to infer upon the hidden state of the environment. The
study of perceptual inference and the integration of sensory
information has a long and rich history. On the cognitive level,
there is a variety of models that, given experimentally acquired
readouts of behavior, allow for inference upon inter-individual
differences in information processing. On the physiological
level, neuroimaging studies have proven useful for identifying
neural signatures of perceptual inference.

A striking example is the mismatch negativity (MMN), an
electrophysiological response typically observed as part of
an oddball paradigm, where a sequence of identical stimuli
(‘standards’) is eventually interrupted by a stimulus differing

in one of the stimulus dimensions (‘deviant’). These stimuli
are usually either auditory or visual. Here, we focused on
the auditory MMN. The observed deviant-induced increase in
negativity in the event-related potential (ERP) between 100
and 250 ms after stimulus onset constitutes the auditory MMN
and is typically assessed by subtracting the average ERPs to
standard stimuli from the average ERPs to deviant stimuli.

Since its discovery by Näätänen et al. (1978), the MMN has
often been used to illustrate that humans learn the statistics
of their environment (Winkler, 2007) and that deviations in
the MMN response can be indicative of certain pathologies.
For example, patients with schizophrenia are characterized by
weaker MMN amplitudes (Avissar et al., 2018; Erickson et al.,
2016). Schizophrenia has also been associated with aberrant
NMDA-receptor function (Stephan et al., 2009; Friston et al.,
2016) which, in turn, has been proposed to relate to prediction
error signaling in predictive coding frameworks related to
Bayesian inference (Friston, 2005).

While the MMN is well-studied, robust, and appears to be
clinically relevant, inter-individual differences in the expression
of this feature cannot readily be related to inter-individual
differences in cognitive processing style in the absence of
direct behavioral readouts. To bridge this gap, we here seek
to relate EEG recordings acquired as part of an auditory MMN
paradigm to a generative model of learning and inference, the
Hierarchical Gaussian Filter (HGF) (Mathys et al., 2011). Put
simply, we propose an approach that allows for fitting the HGF
directly to electrophysiological (as opposed to behavioral)
data. The key challenges in this approach are the high
level of noise in the electrophysiological data and its high
dimensionality, rendering a direct mapping from beliefs of our
cognitive model to observable EEG responses challenging.
We therefore first engaged in data-driven feature selection
based on multilinear principal component analysis (MPCA)
and subsequently constructed a response model for the HGF
that generates trial-wise predictions of principal component
weights for recorded electrophysiological responses.
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Methods & Results

Subjects

We draw on data from a total of 81 healthy volunteers from
a previous pharmacological EEG study which examined the
effect of dopaminergic and cholinergic antagonism on MMN
expression (Weber et al., in prep.). Here, participants received
either amisulpride, biperiden or placebo in a between-
subjects, double-blind design.

Experimental paradigm

Participants engaged in a new variant of the roving auditory
MMN paradigm, introducing different levels of volatility to
the underlying statistical structure of the tone sequence. In
the typical auditory MMN paradigm, following a sequence of
repeating sounds, a deviant sound is presented that differs in
a certain stimulus dimension (typically in pitch). In the roving
MMN paradigm, this initially odd sound is being repeated and,
over time, becomes the new standard. In the volatile variant
employed here, the probability governing those sound flips
changes over time such that, over the n = 1800 trials, some
periods are more stable than others (see Figure 1).

Figure 1: The MMN stimulus sequence visualized. The blue
line indicates the probability of a high-pitched vs. low-pitched
tone occurring. The orange area indicates stable phases,
where for at least 100 trials no rule change occurred.

Data acquisition and preprocessing

Electrophysiological data were recorded using a 64-channel
EEG cap (EASYCAP, BrainProducts). EEG analysis was
performed using SPM12 and MATLAB. The continuous EEG
signal was re-referenced to the average and filtered as follows:
First, a high-pass Butterworth filter with a cutoff frequency of
0.1 Hz was applied. Next, the data were down-sampled to
250 Hz. Finally, a low-pass Butterworth filter with a cutoff
frequency of 30 Hz was employed. The EEG data were
epoched into 550 ms long segments, beginning 100 ms prior
to stimulus onset. Epochs were baseline-corrected. Following
the rejection of subjects with poor signal quality, EEG data of
72 subjects were further analyzed.

Feature selection

An MPCA-based approach To reduce data dimensionality
while retaining as much of the rich signal as possible, we
engaged in data-driven feature selection based on multilinear
principal component analysis (MPCA) (Kroonenberg &

De Leeuw, 1980), an extension of PCA that allows processing
matrices with more than two dimensions.

We defined the data of a single subject as containing
n = 1800 measurements (trials) of (m× k) ‘two-dimensional’
samples, with m = 139 time points and n = 63 EEG sensors.
MPCA was carried out using the implementation of Lu et
al. (2008). Given a desired number of linearly uncorrelated
temporal (l1 < m) and spatial (l2 < k) components, MPCA
decomposes the data into a weight matrix, W (of size n×
l1 × l2), and two coefficient matrices: T, of size l1 × m,
for the temporal components, and S, of size l2 × k, for the
spatial components. As W is three-dimensional, a joint
reconstruction in space and time can be carried out.

After having successfully validated the consistency of
principal components across subjects, we carried out a single
MPCA on a three-dimensional data matrix, where subjects’
recordings, each of size n×m× k, are stacked along the first
dimension to form an input matrix X ∈ R(n×s)×m×k, where s
represents the number of subjects. We therefore interpreted
data from different subjects as additional observations of the
same variables. This leads to all subjects sharing the same
components and differing only in their component weights.

The first ten temporal and spatial principal components
obtained through this MPCA are shown in Figures 2 and 3.

Figure 2: Top-10 temporal components for stacked MPCA

Figure 3: Top-10 spatial components for stacked MPCA
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Component selection In order to select the principal
components for the subsequent modelling step, we assessed
how much of the relevant signal inherent in the original data
is maintained when projecting the MPCA weights back to
their original space using only a small subset of spatial and
temporal components. We defined the relevant ‘signal’ as the
amplitude of the negativity in the typical MMN time window
at a sensor which typically shows strong MMN effects. To
quantify the signal-to-noise ratio (SNR) both in the original
and in the MPCA-reduced data, we assessed the maximum
negative voltage within a time window of +100 to +248 ms
(relative to the average voltage across all other time points of
the measurement) at sensor Fz for each trial, and compared
the distribution of measures for all standard vs. deviant trials
using Welch’s t-test statistic for unequal variances.

Beginning with the frontal electrode Fz and using the
approach outlined above, we assessed the SNR of our signal
when using only a single spatial and temporal component,
relative to that of the original EEG data. We found
that, for most subjects, the MPCA reconstruction using the
combination of spatial component 1 and temporal component
8 resulted in higher scores than the raw data (see Figure 4),
whereas for all other combinations, the opposite was the case.

Figure 4: Difference in t-values expressing SNR of partially
reconstructed data using spatial component 1 and temporal
component 8, compared to the original EEG data, per
participant. Relative negative scores (red) represent an
improvement in SNR, positive scores (blue) a reduction.

This combination of spatial and temporal component also
turned out to be the winning feature when (i) instead of the
maximal negative voltage within the specified time window,
the area under the curve was measured; when (ii) data from
different sensors (Fz, FCz, and Oz) were assessed; and when
(iii) the component was chosen with the strongest correlation
between trial-by-trial component weights and the trial-by-trial
precision-weighted prediction error trajectories of a Bayes-
optimal agent under the HGF.

Modeling
The perceptual model We hypothesized that subjects
exposed to the MMN tone sequence would infer upon two
quantities: (i) the probability of hearing a high-pitched vs.
low-pitched tone and (ii) the volatility of this probability, or
how quickly this quantity is currently changing. As perceptual
model, we therefore chose the 3-level HGF for binary inputs
(Mathys et al., 2011), where the second level describes the

belief about the current tendency towards a tone category
(high-pitch vs. low-pitch), i.e., the current regularity in the tone
sequence, and the third level captures the agent’s belief about
environmental volatility.

In the HGF, the agent’s beliefs about both of these
quantities are updated on each trial k in response to the tone
input, where the magnitude of the update of the posterior
mean is proportional to a precision-weighted prediction error:

∆µ(k)i ∝
π̂
(k)
i−1

π
(k)
i

δ
(k)
i−1, (1)

where ∆µ(k)i denotes the change in the posterior mean

at level i of the HGF hierarchy, and where δ
(k)
i−1 represents

the prediction error measuring the difference between the
prediction made for, and the actual input observed at, the level
below the current one. This prediction error is then weighed
by a ratio of precisions, such that more precise predictions
about the level below the current one (π̂

(k)
i−1) lead to stronger

updates, while more precise beliefs at the current level (π(k)
i )

are less impacted by PE-driven updates.
On the lower hierarchical level, the mean µ2 of the belief

about the regularity is updated according to Equation 2.

µ(k)2 = µ̂(k)2 +σ
(k)
2 ∗δ

(k)
1 , (2)

where δ1 represents the prediction error about the stimulus
and σ2 is the uncertainty (inverse precision) about the current
estimate of µ2. Together, they form the lower-level precision-
weighted PE ε2.

The HGF has a number of perceptual parameters that
describe the individual cognitive processing style of an agent
and determine the exact belief updates. For the full model
specification including all parameters, please refer to Mathys
et al. (2011). Here, we were particularly interested in the
tonic learning rate ω2, which quantifies an agent’s general
willingness to update her beliefs irrespective of (or in addition
to) her current estimate of volatility. We thus focused on
inferring this parameter from the EEG data. In the following,
we always fixed all other perceptual parameters to their Bayes
optimal value, which is the value resulting in the least surprise
over the whole input sequence.

The response model Given the MMN input sequence and
a choice of parameter values for the perceptual model, the
HGF generates trial-by-trial trajectories of beliefs. Based on
those trajectories, we designed a response model to generate
trial-by-trial EEG responses y(k) – here, corresponding to the
trial-by-trial weights of the chosen principal components. As
the MMN has frequently been viewed as the manifestation of
a precision-weighted prediction error (Lieder et al., 2013), we
sought to generate our responses (see Equation 3) based
on the lower-level prediction error that is irrespective of a
particular stimulus category (the absolute of δ1), weighted by
its precision weight (σ2), as shown in Equation 3.
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y(k) = β0 +β1 logit(|δ(k)1 |)σ
(k)
2 +η, (3)

where η∼N (0,ζ),

Here, the response model parameter β0 can be understood
as the offset, β1 as the effect of our logit-transformed and
precision-weighted prediction error, and η models Gaussian
noise with zero mean. The logit transform (see Equation 4)
was applied to map the (absolute) prediction errors, which,
due to the binary nature of the inputs, lie between 0 to 1, to a
range from minus to plus infinity.

logit(x) = log(
x

1− x
) (4)

Parameter recovery Examining the practical identifiability
of parameters with our model, we found that the recovery
of a single parameter in isolation is unproblematic but that
β1 and ω2 are highly correlated and that high levels of
noise (ζ ≥ 2000) pose problems for a successful parameter
recovery. In particular, in those noise regimes, only parameter
sets including reasonably high values of ω2 and β1 can be
recovered reliably.

Fitting the data Given the difficulty of simultaneously
estimating β1 and ω2, we started by fixing β1 and estimating
β0, ω2 as well as ζ. Figure 5 shows the results for fitting
ω2, β0, and ζ while fixing β1 = −5. We see that, for all
subjects, the fitting procedure succeeded and the posterior
means differed, for all three parameters (β0, ω2, and ζ), from
the corresponding priors. We next systematically varied β1
and found internal consistency in the ω2 estimates across
the range of β1-values that, in a previous parameter recovery,
were found to be identifiable.

Figure 5: Fitting β1, ω2, and ζ, with β1 = -5. The prior means
for (β0, ω2, ζ) were set to (0, -3, 500); their corresponding
variances to (4,44, 4). The red lines correspond to the prior
means; the y-axes indicate the parameter values.

Discussion
Overall, while our results represent a first step towards
successfully estimating perceptual parameters of the HGF

based on EEG recordings, the exceedingly high estimates
for our noise parameter as well as the high parameter
correlation between β1 and ω2 currently still pose restrictions
on the interpretation of our results. For future applications
of this pipeline, it will be important to solve these issues
and potentially explore other mappings from HGF quantities
to EEG features. In the future, we hope that our approach
will increase the utility of the MMN paradigm for cognitive
neuroscience and computational psychiatry by helping to
reveal the nature and time course of perceptual inference in
schizophrenia and other illnesses.
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