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Abstract
Objects we choose between often have multiple features.
Research has shown that decision-making is guided
by attentional selection of contextually-relevant features,
while ventromedial prefrontal-cortex(vmPFC) represents
the expected outcomes associated with these features.
Yet, if this selective value retrieval is not entirely per-
fect, irrelevant features, and values they carry in other
contexts, will influence neural value representations as
well as choice. We tested this idea by utilizing a context-
dependent random-dot motion paradigm. Forty humans
made decisions between two clouds of moving dots,
each consisting of two features (motion direction and
dot color). First, participants learned to associate each
color and motion with specific rewards. During subse-
quent decision making, a context cue indicated the tri-
als relevant feature-type (color/motion) and choices led
to outcomes associated with the relevant feature. In line
with our hypothesis, the more values of the irrelevant fea-
tures agreed with the relevant, the faster participants re-
acted. fMRI analyses showed parametric modulation of
the vmPFC/OFC signal by both (1) the relevant feature
value and (2) the value difference between irrelevant fea-
tures. These results indicate that contextually-irrelevant
features influence value representation and suggest that
the brain’s decision system computes values in the pres-
ence of partial activation of irrelevant context or task
states.
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Introduction
In the field of value-based decision-making, it is believed that
people usually follow the principle of value maximization (e.g.,
Kahneman & Tversky, 1979), i.e. the subjective value is first
evaluated for each alternative, and the option with the highest
expected value is chosen. This representation of expected
value is believed to reside in the ventromedial prefrontal cortex
(vmPFC, e.g. Bartra, McGuire, & Kable, 2013).

In everyday life, we often have to make decisions between
objects with multiple features (or attributes) that predict out-
comes in different contexts. For example, when we choose
a medicine, the active ingredients, but not the color of the
pills, will predict its value. When picking a fruit during the
same shopping trip, however, the color might be the best pre-
dictor of its value. There have been many investigations to

Figure 1: Experimental paradigm. Each trial started with
a cue of the relevant dimension (left). Each cloud had two
features (motion and color) and participants made a decision
between the two clouds (middle). After a choice, participants
received the outcome associated with the chosen cloud’s cued
feature (right). In the figure, an incongruent trial is presented,
i.e., the irrelevant and cued dimensions disagree. Congruency
strength is -3, see text in Figure.

how humans and animals make decisions between objects in
the presence of distracting information (e.g., Li, Michael, Bala-
guer, Castan, & Summerfield, 2018; Mante, Sussillo, Shenoy,
& Newsome, 2013) or integrate values associated with dif-
ferent features of the same object in order to elicit a deci-
sion (e.g., Pelletier & Fellows, 2018; Basten, Biele, Heek-
eren, & Fiebach, 2010). Previous research has shown that
during decision-making the brain’s attentional control network
enhances the processing of features that are relevant in the
current context (Niv et al., 2015). Yet, if such attentional filter-
ing is not perfect, then outcome expectations associated with
the features that are irrelevant in the current context might in-
fluence subjective value and choice.

The aim of this study is to systematically test this influence.
We hypothesized that contextually irrelevant features would
have an impact on participants’ choice behavior (i.e. reac-
tion time, RT) as well as bias the expected value signal in the
vmPFC.

Methods
Experimental procedure
Forty young participants performed a random dot motion
paradigm (18 women, µage = 27.6,σage = 3.35). Psychophys-
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ical properties of four colors and four motion directions were
first titrated using a staircasing procedure. Before fMRI scan-
ning, participants learned the outcomes associated with each
of these eight features. During fMRI scanning, participants
were asked to make decisions between two random dot kine-
matograms, each of which had one color and one direction
from the same set. Importantly, in each trial participants were
first cued whether a decision should be made based on the
color or motion features, and received only the outcome asso-
ciated with the contextually relevant feature of their choice.

Staircasing procedure
In order to ensure that reaction times (RTs) depended mainly
on the associated values (e.g., Hunt et al., 2012) and not
on other stimulus properties, such as salience, we used a
staircasing procedure that was conducted prior to value learn-
ing. In this procedure, motion coherence and color saturation
were adjusted for each participant in order minimize between-
feature RT differences in a perceptual detection task. Mo-
tion coherence and color saturation were adjusted for 168
trials, while luminance in YCbCr color space remained fixed
throughout (cf. Abbott, Griffiths, & Regier, 2016). As can be
seen in Figure 2A, RT differences between the eight used
stimulus features (indexed by variability) was markedly re-
duced after compared to before the procedure (µ = 0.019 vs.
µ = 0.12, t(39) = 5.83, p < .0001). This ensured that any later
changes in RT can be associated with the learned value infor-
mation.

Outcome learning
Prior to the main task, participants learned to associate each
of the four colors and four motion directions with determin-
istic outcomes. Outcomes associated with the four features
on both dimensions were 10, 30, 50 and 70 credit-points (for
simplicity, henceforth: 1,2,3,4). For this part, we used single-
feature clouds only (henceforth: 1D), i.e. no coherent motion
or no color (gray) for color and motion clouds, respectively.
Therefore each cloud in this part only represented a single
feature. Eighty ’forced-choice’ trials in which only one cloud
was presented were followed by a blocks of 72 free-choice tri-
als in which two 1D clouds were shown. Free-choice blocks
repeated until participants reached a minimum of 85% accu-
racy of choosing the higher valued cloud in a block (minimum
2 blocks, maximum 4). Crucially, in free-choice trials the two
1D clouds could be of the same dimension (e.g. color and
color) but also from different dimensions (e.g. color and mo-
tion). This was done to encourage mapping of the values for
each dimension on similar scales. This type of trials did not
repeat in the decision making task.

Decision Making Task
In order to investigate how contextually irrelevant features in-
fluence the expected value of choices, we utilized a context-
dependent random dot motion paradigm (e.g. Pilly & Seitz,
2009), in which a choice between two clouds of moving dots
was presented. As can be seen in Figure 1, each cloud had

two features (a motion direction and a color) that were associ-
ated with specific rewards in the previous phase (henceforth:
2D trials). At the start of each trial, participants were cued to
focus only on one dimension, and had to choose the stimulus
with the higher valued feature on the cued dimension. Fol-
lowing a choice, the outcome associated with the contextually
relevant feature of the chosen cloud was presented. Thus, in
each trial only the two features on the cued dimension were
relevant for determining the choice. This part included four
blocks, each of 96 trials (36 1D trials and 60 2D trials).

Importantly, four features were present during 2D trials: the
two relevant features, one on the left and one on right, and the
two irrelevant features. Each of these four features had one
associated outcome, and the main purpose of this paradigm
was to study how these values influence choices and brain
activity. To constrain complexity, the two features on the cued
dimension always had a value difference of 1, i.e. the choices
on the cued dimension were only between outcomes of 1 vs.
2, 2 vs. 3 or 3 vs. 4. The features on the irrelevant dimension
could have bigger value differences (see congruency strength
below). In some trials, no irrelevant stimulus features were
present, i.e. both clouds were 1D clouds.

Lastly, to prevent context confusion caused by frequent
switching, the cued dimension stayed the same for 5-7 trials
and only then switched (in a non-predictive manner). Partic-
ipants were instructed that they collect all the reward points
throughout the experiment and that all collected points would
be translated to monetary reward at the end of the experiment
(1 Euro payment per 600 credit points).

Results

Behavioral analysis

We included only accurate trials in our analysis, i.e. trials
in which participants choose the highest value based on the
cued dimension. Overall accuracy was well above chance
(µ = 0.896,σ = 0.054, t(39) = 46.14, p < .0001). Replicat-
ing previous findings (e.g. Hunt et al., 2012), participants
reacted faster when choosing higher valued options (linear
mixed effects model: χ2(1) = 370.282, p < .0001). In line
with our hypothesis, we additionally found that RTs were faster
when the irrelevant dimension was congruent (i.e. indicated
the same choice), compared to incongruent (i.e. indicated
the other option, t(39) = 4.5737, p < .001, Figure 2B.). We
further quantified congruency strength of a choice by taking
the value difference of the irrelevant features (chosen minus
unchosen options, 1 minus 4 in Figure 1). The congruency
strength ranged from -3 to 3, with negative numbers repre-
senting more incongruent trials. Crucially, the congruency
strength represents only the outcome-irrelevant values of the
trial. As can be seen in Figure 2C, the more positive the con-
gruency strength, the faster participants reacted (linear mixed
effects model: χ2(1) = 11.623, p < .0001). I.e., the larger the
value associated with the irrelevant feature on the chosen side
was, relative to the unchosen side, the faster were RTs.
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Figure 2: Behavioral results. (A) Staircasing procedure. RT
variance (y-axis) for the different features was significantly re-
duced. Variance was computed for each participant as the dif-
ference between the median RT per feature and their overall
median RT. (B) Main congruency effect. Participants reacted
faster for congruent trials compared to incongruent trials (C)
Effect of congruency strength. Participants responded faster
with increasing congruency and slower with increasing incon-
gruency. All effects presented are significant at p<0.001,
N=40. In B and C, Y-axis represents the RT z-scored for each
participant separately and error bars in B and C represent
standard error of the mean.

fMRI analysis
Preprocessing We acquired fMRI data using a multi-band
sequence (acceleration factor 4, TR 1250ms, TE 26ms, FA
71, 64 2mm slices, 2x2mm in plane resolution). A tilt angle of
30 degrees from AC-PC was used in order to maximize sig-
nal from the orbitofrontal cortex (OFC, see Weiskopf, Hutton,
Josephs, & Deichmann, 2006). Preprocessing was done us-
ing fMRIPrep (Esteban et al., 2018). In short, based on the es-
timated susceptibility distortion generated from the deforma-
tion field estimated based on two echo-planar imaging (EPI)
references with opposing phase-encoding directions, an un-
warped BOLD reference was calculated and used for a more
accurate co-registration with the anatomical image. BOLD
runs were slice-time corrected and the BOLD time-series were
resampled to MNI152NLin2009cAsym standard space. Six

head-motion estimates were calculated and used for correc-
tion in later analysis.

General Linear Model analysis We analyzed the fMRI data
using a general linear model (GLM). We included 5 regressors
of interest including two onset regressors of the two trial-types
(1D trials/2D trials). Each trial-type had an additional para-
metric modulator representing the value of the relevant fea-
ture of the chosen side. For the 2D trials, we included an
additional parametric modulators of the congruency strength
of the trial, i.e. positive numbers for congruent and negative
for incongruent trials. Additional regressors reflected cue and
outcome onset, in addition to six motion nuisance regressors.
The parametric regressors representing the chosen values of
both trial types captured a main effect of chosen value in or-
bitofrontal cortex, the ventral striatum, and hippocampus (Fig-
ure 3A.). The parametric regressors representing the congru-
ency strength of the 2D trials captured a main effect in the an-
terior insular/posterior OFC (Figure 3B ,p<0.001, uncorrected
for both effects). These results indicate that the signal in the
vmPFC is influenced by the contextually outcome-irrelevant
values, both of the chosen as well as the unchosen objects
(since the congruency strength is dependent on both)

Discussion

In daily life, selecting which features should lead our deci-
sions is a very challenging task. In this study, we showed
that even when the relevant features are cued explicitly and
the reward that appears immediately after choice is not influ-
enced by the irrelevant feature, this selective value retrieval
process is less than perfect. Participants RTs were influenced
by all the valued-features that were associated with each ob-
ject. Furthermore, this influence was not merely based on

Figure 3: Second-level group analysis (A) Effect of the cho-
sen value. Visualization of BOLD activation for the chosen
value parametric modulation in the vmPFC. (B) Effect of con-
gruency strength. Visualization of BOLD activation for the
ConS parametric modulation in the anterior insular/posterior
OFC. All t-value maps are thresholded at p < 0.005 uncor-
rected for illustration purposes. The upper right corner insets
denote the MNI coordinate of the respective slice.
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the agreement of the ignored and cued features, but rather
on the specific strength of the agreement (or disagreement).
This shows that participants meaningfully processed the cued
and ignored features of both objects, and both influenced their
choice.

Moreover, the strength in which the outcome-irrelevant fea-
tures agree with the decision parametrically modulated the
signal in the vmPFC. The vmPFC plays a crucial role in
guiding behavior based on the representation of rewards
(Rushworth, Kolling, Sallet, & Mars, 2012). The signal mea-
sured in this region is believed to represent the expected-value
of a choice, irrespective of the stimuli that are associated with
the reward (Lebreton, Jorge, Michel, Thirion, & Pessiglione,
2009). It is likely that this requires placing all options’ val-
ues on a common scale (Chib, Rangel, Shimojo, & O’Doherty,
2009; McNamee, Rangel, & O’doherty, 2013).

These results indicate that contextually-irrelevant features
can influence participants expected value of their choices –
and highlight the economy of adding irrelevant but otherwise
valuable features to products. The influence on the expected
value representation in the vmPFC elucidate the potential
neural mechanisms underlying choices made based on fea-
tures that are known to be irrelevant for the outcome. Future
analysis could shed light on the exact nature of the relations
between these effects and attentional mechanisms using mul-
tivariate analysis, and whether relevant and irrelevant values
are processed in parallel or are integrated in vmPFC repre-
sentations during choices.
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