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Abstract
In daily life situations, we have to perform multiple tasks
given a visual stimulus, which requires task-relevant in-
formation to be transmitted through our visual system.
When it is not possible to transmit all the possibly rel-
evant information to higher layers, due to a bottleneck,
task-based modulation of early visual processing might
be necessary. In this work, we report how the effective-
ness of modulating the early processing stage of an ar-
tificial neural network depends on the information bot-
tleneck faced by the network. The bottleneck is quanti-
fied by the number of tasks the network has to perform
and the neural capacity of the later stage of the network.
The effectiveness is gauged by the performance on mul-
tiple object detection tasks, where the network is trained
with a recent multi-task optimization scheme. By asso-
ciating neural modulations with task-based switching of
the state of the network and characterizing when such
switching is helpful in early processing, our results pro-
vide a functional perspective towards understanding why
task-based modulation of early neural processes might
be observed in the primate visual cortex2.
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Introduction
Humans and other animals have to perform multiple tasks
given a visual stimulus. For example, seeing a face, we may
have to say whether it is happy or sad, or recognize its iden-
tity. For each of these tasks, a subset of all the features of the
face are useful. In principle, it could be possible for a visual
system to extract all of the features necessary to solve all pos-
sible tasks, and then select the relevant information from this
rich representation downstream. However, as the number of
tasks increases, a network with a limited capacity may not be
able to extract all of the potentially relevant features (an infor-
mation bottleneck is manifest), requiring the information that
is extracted from the stimulus in the early processing stages
to change according to the task.

Several studies in neuroscience have found evidence
for such task-dependent modulations of sensory process-
ing in the primate visual system, including at the early lev-
els (Carrasco, 2011; Maunsell & Treue, 2006; Gilbert &
Li, 2013). For example, human neuroimaging studies have

1Equal contribution
2The code to train and analyze the networks mentioned here can

be found at - https://github.com/novelmartis/early-vs-late-multi-task

shown that attending to a stimulus could lead to an increase
in the accuracy with which its task-relevant features could be
decoded by a classifier in early visual areas (Jehee, Brady,
& Tong, 2011), and neurophysiological experiments in non-
human primates have shown that the stimulus selectivity of
neurons in primary visual cortex was dependent on the task
the monkeys had to perform (Gilbert & Li, 2013).

Despite the observation of such modulations of early vi-
sual processing, it is not clear whether they are causally
necessary for performing better on the corresponding tasks.
This question has been addressed by deploying biologically-
inspired task-based modulations on computational models.
Lindsay and Miller (2018) showed that task-based modula-
tion deployed on multiple stages of a convolutional neural net-
work improves performance on challenging object classifica-
tion tasks. Other recent work (Thorat, van Gerven, & Peelen,
2018; Rosenfeld, Biparva, & Tsotsos, 2018) has also shown
that task-based modulation of early visual processing aids
in object detection and segmentation in addition to the task-
based modulation of late processing. However, the conditions
under which early modulation can be beneficial in performing
multiple tasks have not been systematically investigated.

In the present work, we assessed the effectiveness of task-
based modulation of early visual processing as a function of
an information bottleneck in a neural network, quantified by
the number of tasks the network had to execute and the neu-
ral capacity of the network. To do so, we trained networks to,
given an image, provide an answer conditioned on the cued
task. Every task required detecting the presence of the corre-
sponding object in the image. The networks were trained ac-
cording to a recent framework proposed in the field of contin-
ual learning (Cheung, Terekhov, Chen, Agrawal, & Olshausen,
2019), which helps them execute multiple tasks by switching
their state given a task cue, in order to transmit relevant infor-
mation through the network. In this work, to quantify the effec-
tiveness of task-based modulation of early neural processing,
we measured the increase in performance provided by mod-
ulating early neural processing in addition to modulating the
late neural processing in the networks.

Methods
Task and system description
In a multi-task setting, object detection can be thought of as
solving one of a set of possible binary classification (one ob-
ject versus the rest) problems. Given an image and a task cue
indicating the identity of the object to be detected, a network
had to output if the object in the image matched the task cue.

We used MNIST (LeCun, Bottou, Bengio, & Haffner, 1998)
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digits and their permutations as objects (Kirkpatrick et al.,
2017). The original MNIST dataset has 28× 28px2 images
of 10 digits. Each permuted version consists of images of
those 10 digits, whose pixels undergo a given permutation,
creating 10 new objects. We varied the number of permuta-
tions used (10, 25, and 50) to modulate the number of tasks
the networks had to perform (which are 10 times the number
of permutations).

We considered a multilayer perceptron with rectified linear
units (ReLU), which had one hidden layer between the input
(image) and the binary output. The number of neurons in the
hidden layer were variable (32, 64, and 128) and determined
the neural capacity of the late stage of the network.

Task-based modulation and its function

Modelling biological neurons as perceptrons (Rosenblatt,
1957), task-based modulations have been shown to affect the
effective biases and gains of the neurons (Maunsell & Treue,
2006; Boynton, 2009; Ling, Liu, & Carrasco, 2009). The na-
ture of modulation - which neurons to modulate and how -
is under debate (Boynton, 2009; Thorat et al., 2018). We
adapted these findings by introducing task-based modulation
into our networks via the biases of the perceptrons and the
gains of their ReLU activation functions. The modulations
were then trained end-to-end with the rest of the network.

Given a particular task, the task cue is a one-hot encod-
ing of the relevant object. Task-based modulation is mediated
through bias and gain modulation in the following manner.

xn = [Wn(gn−1 ◦ xn−1)+bn]+ (1)

gn = Gnc, bn = Bnc (2)

where the transformation between layers n−1 and n (Ln−1→
Ln) is modulated by changing the slope of the ReLU activation
function (gain, gn−1) in Ln−1 and the bias (bn) to the percep-
trons in Ln; xn are the pre-gain activations of the perceptrons
in Ln, Wn is the task-independent transformation matrix be-
tween Ln−1 and Ln, Gn and Bn map the task cue c (one-hot
encoding of the relevant object k) to the gain and bias mod-
ulations of the perceptrons in Ln respectively, and ◦ refers to
element-wise multiplication.

Given a task k, modulating the gains of the pre-synaptic
perceptrons (in Ln−1) and the biases of the post-synaptic per-
ceptrons (in Ln) transforms the information transformation be-
tween Ln−1 and Ln. This allows for the transmission of in-
formation required to perform task k, while ignoring the infor-
mation required to perform the other tasks, as formalized in
Cheung et al. (2019). This transformation can also be thought
of as the network switching its state to selectively transmit
task-relevant information downstream (see Figure 1). The
conditions - the nature of these modulations and the neural
capacity of the network - under which the network can switch
between a given number of tasks, are preliminarily described
in Cheung et al. (2019).

Here, for every relevant layer Ln, Wn, Bn, and Gn were jointly
learned for the given number of tasks.

Figure 1: The effect of bias and gain modulation on the trans-
formations in the network. Modulating the gains and biases is
functionally equivalent to switching the transformation being
performed to one suited for the relevant task. Such an ex-
ample of switching is visualized in the figure. Given a task cue
corresponding to object k, corresponding gain and bias modu-
lations are applied, which results in the Ln−1→ Ln transforma-
tion being switched into one that transmits feature information
required to detect the presence or absence of object k.

Evaluation metric and expected trends
The effectiveness of early neural modulation was quantified
by the average absolute increase in detection performance
across all the tasks when modulations were implemented on
both the transformations L1 → L2 and L2 → L3 (L1 corre-
sponds to the input layer and L3 to the output layer) as op-
posed to when the modulations were trained on the transfor-
mation L2→ L3 only.

We expected the effectiveness of task-based early neural
modulation to be directly proportional to the number of neu-
rons in L2 and inversely proportional to the number of tasks
(permuted MNIST sets used).

Neural network training details
All the networks were trained with adaptive stochastic gra-
dient descent with backpropagation through the ADAM opti-
mizer (Kingma & Ba, 2014) with the default settings in Tensor-
Flow (v1.4.0) and α= 10−5. We used a batch size of 100. Half
of each batch contained randomly selected images of ran-
domly selected tasks where the cued object was present, and
half where the cued object was not present. These images
were taken from the MNIST training set and its corresponding
permutations. The images were augmented by adding small
translations and some noise. We trained each network with
107 such batches. The relevant metrics discussed in the pre-
vious section are computed at the end of training over a batch
of size 105 created from the MNIST test set and its corre-
sponding permutations.
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Results
We first analyzed the detection performance of the network
with only L2→ L3 modulation. The network performance as a
function of the number of neurons in L2 and the number of de-
tection tasks the network had to perform is shown in Figure 2
(red circles). The network performance increased with an in-
crease in the number of neurons in L2, as the neural capacity
increased. The performance decreased with an increase in
the number of tasks to be performed, as the representational
capacity of the network for any one task was reduced. A net-
work with as little as 32 neurons in its hidden layer was able to
switch between as many as 500 detection tasks, while keep-
ing the average detection performance across all the tasks as
high as 87%, thus replicating the success of the multi-task
learning framework proposed by Cheung et al. (2019).

To assess the dependence of the effectiveness of task-
based modulation of early neural processing (L1 → L2) on
the bottleneck in the network, we analyzed the boost in av-
erage detection performance when task-based modulation of
L1→ L2 was deployed in addition to task-based modulation of
L2→ L3, as a function of the number of neurons in L2 and the
number of detection tasks the network had to perform. The re-
sulting boosts are shown in Figure 2 (∆↑ quantification). The
performance boost increased as the number of neurons in L2
decreased, and as the number of tasks the network has to per-
form increased. This confirms the hypothesis that task-based
modulation of early neural processing is essential when an in-
formation bottleneck exists in a subsequent processing stage.

The contribution of bias and gain modulation
Gain, but not so much bias, modulation of neural responses
has been observed in experiments investigating feature-based
attention in the monkey/human brain (Maunsell & Treue, 2006;
Boynton, 2009). We assessed how the two contributed to the
overall modulation of the transformations in the network.

We selectively turned off the bias or gain modulation for all
the variants of the network that were trained. The average
detection performance decreased by 43.0± 2.0% when gain
modulation was turned off, and by 3.9±0.9% when bias mod-
ulation was turned off, suggesting that in our framework, when
jointly deployed, gain modulation is more important than bias
modulation in switching the state of the network to be able to
perform the desired task well.

We also trained a network with 32 neurons in L2, on 25 per-
mutations of MNIST, with gain-only or bias-only modulations
of both the L1 → L2 and L2 → L3 transformations. When
the gain and bias modulations were jointly trained, the net-
work performance was 94.7%. With gain-only modulation,
the performance was 94.8%, and with bias-only modulation
the performance was 90.9%. As the performance when only
bias modulation was deployed was much higher than chance
(50%), we can conclude that bias modulation alone can also
lead to efficient task-switching. When the bias and gain modu-
lations are jointly trained, gain might take over as it multiplica-
tively impacts responses, and therefore has higher gradients
during training, as opposed to the additive impact of bias.

Figure 2: The effectiveness of task-based modulation (quanti-
fied by the performance boost, ∆↑) of early neural processing
(L1→ L2) as a function of the number of neurons in L2 and the
number of tasks the network has to perform. The performance
boost was inversely proportional to the number of neurons in
L2 and directly proportional to the number of tasks the net-
work had to perform. The absolute performance profiles given
either the modulation of L2→ L3 only or the joint modulation
of L2→ L3 and L1→ L2 are also shown.

Discussion
Adding to the discussion about the functional role of task-
based modulation of early neural processing, in this work we
have shown that modulating the early layer of an artificial neu-
ral network in a task-dependent manner can boost perfor-
mance, beyond just modulating the late layer, in a multi-task
learning scenario in which a network contains an information
bottleneck, either due to a large number of tasks to be per-
formed or to a small number of units in the late layer.

Adapting a formalism proposed by Cheung et al. (2019),
we showed how bias and gain modulation, two prevalent neu-
ronal implementations of top-down modulation in the brain,
could functionally lead to switching the state of a network to
perform transformations effective for the task at hand. While
task-dependent computations are widespread in higher-level
areas of the primate brain, such as prefrontal cortex (Mante,
Sussillo, Shenoy, & Newsome, 2013), it is not clear to what
extent sensory streams (which perform early visual process-
ing) can also be seen as switching their state according to
the current task (although see Gilbert and Li (2013) for a pro-
posal), and what the functional relevance of doing so would
be. Here we show how, in principle, this switching could be
computationally advantageous when it is not possible to send
the information required for all tasks to higher layers, which
might well be the case in the complex environments that hu-
mans and other animals are able to navigate.

To further investigate the relevance of our findings to biolog-
ical visual systems, in follow-up work we intend to deploy our
modulation scheme on architectures that bear more similar-
ity to the primate visual hierarchy, such as deep convolutional
networks (Kriegeskorte, 2015), datasets of naturalistic images
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such as ImageNet (Russakovsky et al., 2015), and general
naturalistic tasks such as visual question answering (Agrawal
et al., 2017). This will allow us to assess whether the func-
tional advantage provided by early modulation holds true in a
more realistic scenario, and whether the resulting modulation
schemes resemble those observed in the early visual areas of
the primate brain.

Finally, a key aspect of our approach is the fact that the
network is constantly operating in a task-dependent man-
ner. Most previous approaches to task-dependent modula-
tion have assumed the presence of an underlying task-free
representation on which the modulation operates (for exam-
ple, in the case of Lindsay and Miller (2018) this corresponds
to a network pre-trained on object recognition). Providing
the network with task cues during the training phase, on the
other hand, has been used in the field of continual learn-
ing (Cheung et al., 2019; Masse, Grant, & Freedman, 2018;
Yang, Joglekar, Song, Newsome, & Wang, 2019), and ac-
cording to one influential theory in neuroscience, the interplay
between sparse, context-specific information encoded by the
hippocampus and shared structural information in the neocor-
tex is crucial for learning new tasks without overwriting previ-
ous ones (Kumaran, Hassabis, & McClelland, 2016). To our
knowledge, the question of how the task-based modulations
observed in visual cortex might be learned has not been ex-
plicitly addressed in previous literature. On the one hand, it
is possible that a context-free representation is learned first,
possibly through unsupervised learning, and then modulated
upon. On the other, learning of representations and task mod-
ulations might interact at all stages, allowing the representa-
tions to be optimized for the type of modulations they are sub-
ject to. Whether one scheme or the other constitutes a better
explanation for the modulations observed in biological visual
systems is an important direction for future research.
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