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Abstract

The ability to appropriately generalise previously 
acquired knowledge to novel situations is a 
hallmark of human intelligence. A possible neural 
solution to this problem is to devote pools of 
neurons to represent the relations between entities 
in the environment explicitly, in a manner that is 
divorced from the entities themselves. Such an 
explicit representation can generalise to novel 
situations with the same relational structure. Grid 
cells, originally found in the entorhinal cortex, have 
been proposed as such an explicit representation 
of the relations between different locations in 
physical space. However, the neural 
representations underlying the generalisation of 
relational structures in abstract tasks remain poorly 
understood. Here we use fMRI in humans to show 
that the entorhinal cortex explicitly represents the 
relations between reward-predicting stimuli in a 
reinforcement learning task with different 
underlying correlation structures between the 
reward probabilities associated with different 
stimuli. Our results demonstrate that the same 
brain regions, perhaps with the same mechanisms, 
represent the relational structure of the task in both 
spatial and abstract decision-making tasks. This 
suggests that the brain uses a common coding 
framework for the structure of tasks across a wide 
range of domains.  
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Introduction 

The term “cognitive map” was coined by Tolman (1948) 
to describe the relational internal model underlying the 
flexible inferences his rats were making in complex 
spatial mazes. However, the ability  of animals and 
humans to use such internal models to generalise 

knowledge to novel situations is not unique to the 
spatial domain (Behrens et al., 2018). 

How might this relational knowledge be represented in 
the brain? One option is to encode the relations 
between entities (e.g. locations or objects) in the 
strength of the synapses between pools of neurons 
representing the different entities. However, this 
representation is not generalizable: it is tied to the 
identities of the specific entities. To allow for 
generalisation of the relational structure, its 
representation must be explicit – divorced (abstracted) 
from the sensory particularities of the task or the entities 
in question (Behrens et al., 2018).  

The well-studied domain of spatial cognition has 
revealed a candidate explicit and generalisable 
representation of the structure of 2D spatial tasks: “grid” 
cells, originally found in the entorhinal cortex (EC), fire 
when an animal is in one of multiple locations on an 
equally spaced triangular lattice (Hafting, Fyhn, Molden, 
Moser, & Moser, 2005). Experimentally, grid cells 
maintain (generalise) their firing covariance structure 
across perceptually different rooms (Fyhn, Hafting, 
Treves, Moser, & Moser, 2007). This is only true when 
in both rooms the animal is required to perform the 
same task - free foraging. Crucially, the grid code 
changes when the structure of the task changes 
(Boccara et al., 2019; Butler, Hardcastle, & Giocomo, 
2019). Theoretically, grid-like firing patterns emerge as 
a low-dimensional representation of the covariance of 
place cells firing and of 2D open-field state transition 
matrices (Banino et al., 2018; Dordek, Soudry, Meir, & 
Derdikman, 2016; Stachenfeld, Botvinick, & Gershman, 
2016), suggesting grid cells activity during free 
navigation encodes the statistical regularities common 
to 2D open-field environments. Taken together, this 
suggests that the knowledge embedded in grid cells 
generalises across environments and tasks with the 
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same relational structure, but might “remap” when the 
structure is different (for a review see Behrens et al., 
2018). These are exactly the properties that are 
required from an explicit representation of relational 
structure.  

We hypothesised that the same brain regions where 
grid cells can be found will code for the relational 
structure of a non-spatial reinforcement learning task. 
To test this, we designed a stimulus-outcome 
association task with two underlying correlation 
structures between the outcome probabilities 
associated with stimuli. We could thus test for a brain 
region that represents the same stimulus differently, 
depending on the nature of its relationships with another 
stimulus. Importantly, we also used a second stimuli-
set, resulting in a 2x2 factorial design of stimuli set x 
structure. This enabled us to also test for the other 
requirement of an explicit structural representation: it 
should generalise across stimuli with the same 
relational structure, like grid cells generalise when an 
animal is free foraging in different 2D boxes (Fyhn et al., 
2007). As we hypothesized, we found that the 
entorhinal cortex explicitly coded for the relational 
structure between stimuli when they were presented. 

Results 

Task and behaviour 

We trained participants on a probabilistic stimulus-
outcome association task with two sets of three stimuli. 
Only one of the stimuli sets was used in each block. In 
each trial, participants viewed one of the three stimuli in 

pseudo-random order, and had to indicate their 
prediction for its associated binary outcome (a “good” 
or a “bad” outcome) by either accepting or rejecting the 
stimulus (Fig 1a). Thus, there was always one correct 
answer in each trial: participants should accept if they 
predict the outcome to be the “good” outcome, and 
should reject if they predict the outcome to be the “bad” 
outcome. Outcome identity was revealed in all trials, 
including rejection trails, even though the participant’s 
score did not change in these trials (Fig 1b). Predictions 
of the outcomes could be formed based on the recent 
history, as the probabilities of outcomes for each 
stimulus switched pseudo-randomly between 0.9 and 
0.1 with an average switch probability of 0.15. Crucially, 
for a given stimuli set, the outcome probabilities 
associated with two of the stimuli were positively 
correlated (+Corr) in half of the blocks, and negatively 
correlated (-Corr) in the other half, such that participants 
could learn from the outcome on one correlated 
stimulus about the other (Fig 1c). The third stimulus 
served as a control, and had an independent outcome 
probability (0Corr). Thus, there were four block types, 
arranged in a 2x2 factorial design of stimuli set by 
correlation structure (Fig 1d). In the fMRI experiment 
there were two independent runs of the four block types, 
with a pseudo-random block order counterbalanced 
across participants. The current block-type was 
signaled by the background color of all stimuli in the 
block. Participants pre-learned the mapping between 
background color and correlation structure prior to 
scanning. Hence, the only learning performed during 
scanning was of reversals/outcome probabilities, not of 
the relational structure - knowledge of which was 
available from the first scanning trial. 

Figure 1: a. Example trial. b. Possible trial flows, depending on choice and predetermined outcome c. example 
schedules of the 4 block types. d. schematic of the factorial design. e. Fitted CTs, indicating whether participants 

treated feedback from pairs of stimuli as the same (CT=1), opposite (CT=-1) or independent (CT=0).   
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We modelled the subjects’ behavior using an adapted 
delta-rule with cross-terms (CTs) that enable learning 
from one stimulus to another fitted to behaviour. The 
fitted CTs indicated that participants indeed used the 
correlation structure correctly (Fig 1e).  

The reward network and the hippocampus use 
the relational structure  

We first wanted to test whether known neural signals of 
reinforcement learning showed evidence of knowledge 
about the relational structure. We tested this by 
comparing how well a model that utilised relational 
structure explained neural signals relative to one that 
does not utilise structure (all fMRI analyses were 
performed on the correlated stimuli only, and ignored 
the control stimulus). In both models, we calculated the 
value of the chosen action (accept/reject) and the value 
prediction error on each trial of the two correlated 
stimuli. The first model was a naïve Rescora-Wagner 
model (NAÏVE, cross-terms set to zero), and the second 
model utilised the relational structure (STRCT, cross-
terms fit to behavior). The chosen value estimates were 
used to construct two regressors at the time of stimulus 
presentation, and the prediction error estimates were 
used in a similar way to construct two regressors at the 
time of outcome. Regressors from both models were 
entered into the same GLM (together with the main 
event regressors of stimulus presentation, button press 
and outcome times for all three stimuli). As estimates 
from both models were pitted against each other in the 
same GLM, any variance explained by a particular 
regressor was unique to that regressor, allowing us to 
compare the neural signals uniquely explained by each 
model.    

A network of regions including the medial prefrontal 
cortex (mPFC), the amygdala (AMG), the anterior 
hippocampus (HPC) and the entorhinal cortex coded 
positively for the chosen action value from the STRCT 
model, while most of the orbital surface showed strong 
negative coding (Fig 2A). The difference between the 
STRCT and NAÏVE chosen value effects was positive 
in EC, HPC, medial AMG, dorsal mPFC, parietal cortex 
and the insula, and negative in the orbital surface (Fig 
2B). The STRCT model value prediction error estimates 
correlated with activity in the ventral striatum, HPC and 
AMG (Fig 2C). The same regions coded for the STRCT 
model prediction error more than the NAÏVE model 
(data not shown). These results are an almost exact 
replication of (Hampton, Bossaerts, & O’Doherty, 
2006), indicating the brain uses the relational structure 
to calculate value and learning signals. 

  

Figure 2: Univariate effects of RL parameters 

Entorhinal cortex explicitly represents the 
relational structure of task events 

An explicit neural representation of the relational 
structure of the task should be similar for stimuli which 
are part of the same relational structure, but dissimilar 
for stimuli under a different relational structure. We 
asked whether any region on the cortical surface 
displayed these properties at the times of stimuli 
presentations, using Representational Similarity 
Analysis (RSA, (Kriegeskorte, Mur, & Bandettini, 2008) 
with a searchlight approach (Kriegeskorte, Goebel, & 
Bandettini, 2006). A searchlight centered on a cortical 
voxel consisted of the 100 surrounding voxels with the 
smallest surface-wise geodesic distance from the 
central voxel. For each searchlight, we obtained 16 
patterns of whitened regression coefficients of the 
responses to presentations of each of the two 
correlated stimuli in each of the 8 blocks. In other words, 
we obtained two patterns, one from each of the runs, for 
each of our 8 experimental conditions (a particular 
stimulus under a particular correlation structure). To 
define the “cross-run correlation distance” between 
conditions 𝑖 and 𝑗	(𝑑%,') we first calculated the correlation 
distance (1 − 𝑟) between the condition 𝑖 pattern from 
run 1 and condition 𝑗 pattern from run 2, and then 
calculated the correlation distance between the 
condition 𝑗 pattern from run 1 and condition 𝑖 pattern 
from run 2. 𝑑%,' was defined as the mean of these two 
distances. Importantly, we never correlated conditions 
from the same block. This resulted in an 8 conditions by 
8 conditions symmetric Representational Dissimilarity 
Matrix (RDM), summarising the representational 
geometry in the searchlight (e.g. Fig 3b). The ideal 
explicit structural representation can be formalised as 
an 8x8 model RDM, where the desired distances 
between conditions are determined by relational 
structure (Fig 3a). To test whether the data RDM of a 
given searchlight was consistent with the model RDM, 
we calculated the contrast between the means of the 
data RDM’s hypothesised “dissimilar” and “similar” 
elements (white and black elements in Fig 3a, 
respectively). We then used permutation tests to ask 
whether this contrast was significantly positive across 
participants. We repeated this procedure for each 
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searchlight centre on the cortical surface, resulting in a 
cortical map of p-values.  

The only cluster to survive multiple comparisons 
correction across a hemisphere was located focally in 
the right entorhinal cortex (Fig 3B and 3C, P<0.05 FWE 
corrected on cluster level, cluster-forming threshold 
P<0.001). This effect did not change when we repeated 
the analysis using model RDMs where same-stimuli or 
same stimuli set elements were ignored (data not 
shown). This suggests the effect was not driven by 
background color or low-level plasticity between stimuli 
that appear in the same block, but rather by an explicit 
representation of the relational structure between the 
stimuli in the task.  

 

Figure 3: RSA effects of abstract structure 

Discussion 

Here, we show that the EC explicitly represents and 
generalises the relational structure of a non-spatial 
reinforcement learning task. This is the same area 
where grid cells, suggested to represent relational 
structure in spatial tasks, are found. Evidence of grid-
like coding can also be found in non-spatial, 1D or 2D 
continuous tasks (Aronov, Nevers, & Tank, 2017; 
Constantinescu, O’Reilly, & Behrens, 2016), and the 
EC represents the statistical transition structure of a 
discrete state-space, even when participants are not 
aware of this structure (Garvert, Dolan, & Behrens, 
2017). Taken together, our results suggest the same 
brain regions, perhaps with the same coding scheme, 
represent and generalise task structures in an explicit 
manner, across a wide variety of domains.  
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