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Abstract
It is known that primary visual cortex uses a sparse code
to efficiently represent natural scenes. Based on this
fact, we built up a hypothesis that the same phenomenon
happens at the higher cognitive function. Here we fo-
cus on semantic representation reflecting the meaning of
words in the cerebral cortex. We applied sparse coding
to the matrix consisting of paired data for both brain ac-
tivity evoked by visual stimuli observed while a subject
is watching a video, and distributed semantic represen-
tation made from the description of the video by means
of a word2vec language model. Using this method, we
obtained a dictionary matrix whose bases represent the
corresponding relation between brain activity and the se-
mantic representation. We then analyzed the character-
istics of each base in the dictionary matrix. As a result,
we confirmed that independent perceptual units were ex-
tracted with words representing their functional meaning.
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Introduction
Recently, there are many studies that analyze what a person
recalls while watching videos by observing his or her brain ac-
tivity data via functional magnetic resonance imaging(fMRI).
Huth et al. (A. G. Huth, Nishimoto, Vu, & Gallant, 2012) cre-
ated a semantic map for semantic representation in the cere-
bral cortex by revealing the corresponding relation between
brain activities with the words of WordNet (Miller, 1995) to rep-
resent the objects and motions in moving pictures. Further-
more, they systematically mapped semantic preference onto
the human brain from the brain activity data obtained while
subjects were listening stories(A. Huth, A. de Heer, L. Griffiths,
Theunissen, & Gallant, 2016). Stansbury et al. (Stansbury,
Naselaris, & Gallant, 2013) used latent Dirichlet allocation
(LDA) (Blei, Ng, & Jordan, 2003) to assign semantic labels
to still pictures using natural semantic descriptions synchro-
nized with the pictures and discussed the resulting relation-
ship between brain activity and the visual stimulus evoked by
still pictures. On the base of these relationships, they cre-
ated a model that classifiers brain activity into semantic cat-
egories, revealing the areas of the brain that deal with par-
ticular categories. Cukur et al. (Cukur, Nishimoto, Huth, &

Gallant, 2013) estimated how a person semantically changes
his or her recognition of objects from the brain activity data
in cases where he or she pays attention to objects in a mo-
tion picture. Statistical models analyzing semantic represen-
tation in human brain activity have also attracted considerable
attention as appropriate models for explaining higher order
cognitive representations on the base of human sensory or
contextual information. Furthermore, Nishida et al. (Nishida,
Huth, Gallant, & Nishimoto, 2015) demonstrated that the skip-
gram model, used in the framework of word2vec, as proposed
by Mikolov et al.(Mikolov, Sutskever, Chen, Corrado, & Dean,
2013), is a more appropriate model than conventional statis-
tical models used in quantitative analysis of semantic repre-
sentation in human brain activity under the same experimental
settings as that in the previous studies(Stansbury et al., 2013).
In this paper, we refer to the representation by word2vec as
semantic representation corresponding to the brain activity.
First, we obtain dictionary bases by applying dictionary learn-
ing on a matrix which combines the human brain activity data
obtained while subjects were watching videos and the seman-
tic representation of the content of the video, and estimate
new semantic representations corresponding to the test brain
activity data using bases of the dictionary. Second, we ana-
lyzed some bases of the dictionary, and have confirmed that
the independent brain recognition units were extracted with
words representing their functional meaning.

Estimation of Semantic Representation from
Brain Activity Data

Data

The data we used in the experiments are the brain activity
data of subjects being stimulated by videos and the natural
language sentences to describe their contents (Nishimoto et
al., 2011). We used the brain activity data of 3 subjects (sub-
ject A, B and C) in total. Both data set of A and B contain
4500 samples for training data and 300 samples for test data,
and the data set of C contains 9000 samples for training data
and 600 samples for test data. We use the BOLD signals
observed by means of fMRI as the brain activity data. The
data of subjects A and B were sampled every two seconds,
and the data of subject C were sampled every one second.
When applying dictionary learning to the data, there is a con-

239

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



straint on the number of bases in a dictionary for the size of
the target data: i.e., dimension of data ≤ number of bases <
number of samples. For instance, as for subject C, we set only
782 voxels which output more than 0.55 prediction accuracy
in the previous study (Nishida et al., 2015) as the observa-
tion target among all 70,933 voxels of subject C’s brain activity
data. Here, prediction accuracy represents Pearson’s correla-
tion coefficient between the predicted brain activity values by
means of a Ridge regression model from semantic represen-
tations of the sentences to describe the movies provided as
visual stimuli and real observed brain activity data. The natu-
ral language sentences describing the contents of videos are
the descriptions of the still pictures captured every one sec-
ond from the videos being watched by the subject. These
sentences of the still pictures are written by four annotators
selected randomly from 40 annotators (see Figure 1). The
brain activity data is associated with the data of the sentences
describing the contents for one second each.

Figure 1: Brain activity and language description

Estimation Method

Our method is divided into two phases: learning and execu-
tion. In the learning phase, the brain activity data observed by
using fMRI are converted into a matrix containing the values of
BOLD signals whose rows and columns represent the voxels
and samples, respectively. We call this matrix the brain activity
matrix. Similarly, natural language sentences describing the
videos are also converted into a matrix of semantic represen-
tation, which corresponds to distributed semantics made from
the words whose part-of-speech are noun, verb, and adjective
in the sentences. We call this matrix semantic representation
matrix. We used 300 dimensional distributed representation
vector trained with NINJAL Web Japanese Corpus (NWJC)
in the skip-gram model. Those paired data, i.e., brain activ-
ity data and their annotated natural language sentences, are
represented as a combined matrix of brain activity and se-
mantic representation. Because there is approximately four to
six second time lag in fMRI observation, we made the com-
bined matrix taking account of the time lag. In the learning
phase, the combined matrix consisting of 9000 samples is de-
composed into a dictionary matrix and its coefficient matrix
by dictionary learning for sparse coding. The dictionary ma-
trix consists of bases combining the features of brain activity

and those of semantic representation. The coefficient matrix
is commonly used for the dictionary consisting of both bases
of brain activity and semantic representation. In the execution
phase, a semantic representation matrix is obtained by mul-
tiplying the dictionary matrix with a coefficient matrix derived
from brain activity data via sparse coding.Here, we use Lasso-
LARS as the algorithm for both dictionary learning and sparse
coding. Table 1 shows the data characteristics we used in
the experiment. As mentioned above, there is approximately
four to six second time lag in the observation using fMRI, we
considered the lag in combining both semantic representation
matrix and brain activity data. Furthermore, because it takes
time for dictionary learning with many samples, and subjects
were watching the movies in which almost the same scenes
last for several seconds, we thinned out the samples and re-
duced the size of the target matrix for dictionary learning. As
for the data of subject A and B, we thinned out one in two,
one in three, and one in four for 4500 samples, and as for
subject C, we thinned out one in four and one in six for 9000
samples. As for evaluation, we employ cosine similarity be-
tween the distributed semantic vectors for both matrices; i.e.,
the one reconstructed from brain activity data with the dictio-
nary and the one directly created from natural language sen-
tences used as test data. Moreover, as the analysis for bases
in the dictionary, we examined the bases whose cosine sim-
ilarity are high in the experimental settings of Table 2, and
investigated whether or not there is relationship between the
words retrieved by the bases for the semantic representation
and the pictures retrieved by the bases for brain activity data.

Figure 2: Overview of our method.

Results
Accuracy of estimated semantic representation
Table 2 shows the macro average of cosine similarity between
the correct distributed semantic vectors and the estimated
vectors with the settings for the numbers of bases and thin-
ning, and observation time lag.

Analysis for bases
As shown in Table 2, in the case where subject is B, the num-
ber of bases is 900, and thinning out is one in two, cosine
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Table 1: Dimension size of data and the number of bases
subject original cortex extracted voxels semantic representation combined matrix number of bases

A 65665 481 300 781 800
B 68942 565 300 865 900
C 70933 782 300 1082 1100

Table 2: Cosine similarity between correct and estimated dis-
tribution semantic vectors of NL description

subject number of bases thinning time lag
4sec 6sec

A 800 1/2sample 0.137 0.143
A 800 1/3sample 0.142 0.107
A 800 1/4sample 0.156 0.091
B 900 1/2sample 0.696 0.647
B 900 1/3sample 0.483 0.408
B 900 1/4sample 0.321 0.419
C 1100 1/4sample 0.187 0.210
C 1100 1/6sample 0.134 0.131

similarity is higher than any other settings for both cases of 4
and 6 seconds time lag. we examined the dictionary bases
created in those two settings to investigate the relation be-
tween the bases for brain activity data and those for semantic
representation.

Meaning of the semantic representation bases We an-
alyze the meaning of the bases for semantic representation.
Although there is not a direct word to express the meaning of a
base for its semantic representation, it can be approximately
expressed with close words. We measured the cosine simi-
larity between each semantic representation base and all the
word distributed representation vectors made by NINJAL Web
Japanese Corpus, and retrieved the top five words with high
cosine similarity to the semantic representation base. We re-
gard those words as close words whose meaning is similar to
the semantic representation base.

Samples reconstructed using the same base We con-
firmed whether there is common relation among the top five
samples reconstructed by using a particular base with large
coefficient. Because it is thought that a base for brain activ-
ity should represent some feature of human recognition when
he or she watches a motion picture and a base for seman-
tic representation should represent something to describe the
characteristic of the recognition, it can be expected that the
retrieved pictures are the ones which give us a common or a
similar impression. We retrieved the pictures corresponding
to the top five coefficients of a particular base. Each video
sample is two seconds long, and we retrieved a still image at
one second.

result As the method for selecting the samples to be ana-
lyzed, first of all, all the bases are numbered. We then ran-

domly sampled 50 bases from each dictionary created in the
two experimental settings, and adopted only the bases whose
coefficient should not be zero for the top five pictures retrieved
by the base. In the case of four second time lag setting, We
could adopt 32 bases and 26 bases among 50 bases in the
cases of four and six second time lag settings, respectively.
To analyze the relation between the pictures retrieved by the
bases of brain activity and the words retrieved by semantic
representation, we conducted a questionnaire survey on nine
people asking them to intuitively answer whether or not there
is some relation between the top five pictures and the top five
words retrieved from both 32 bases and 26 bases. Table 3
shows the result of the questionnaire in which the mean of ra-
tio for the number of bases which people answered that there
is some relation between them.

Table 3: Result of a questionnaire survey
4 seconds time lag 6 seconds time lag

Ratio of ”related” 63.19% 36.32%

We see from Table 3 that there should be some relation
between the pictures and the words retrieved through both
paired bases. Table 4 and Table 5 show the pictures and the
words retrieved through a specific base in which all 9 people
answered that there is some relation between them among the
bases analyzed in the two experimental settings for observa-
tion time lag. In particular, we show only two samples of such
specific bases for both observation time lag settings in the ta-
bles. In each table, for a specific base, the words retrieved
from semantic representation, their cosine similarity to the se-
mantic representation vector, and the pictures retrieved from
the bases for brain activity with their coefficients are shown for
the top five samples.

Discussion
First, as for the result of the case with 4 seconds time lag set-
tings, we refer to the two examples in which there is correlation
between the retrieved words and the pictures. As for the base
422, an airplane is shown in all the pictures, and the simi-
lar words associated with an airplane such as ”gliding” and
”takeoff” are retrieved. As for the base 269, we can see that
eyes are shown in four pictures among all five pictures, and
the similar words associated with an eye such as ”eye” and
”pupil” were retrieved. In these pictures, it might be difficult to
see that common appearance is the ”eye” at first glace, be-
sides, we might pay attention to the features such as ”face”,
”animal”, etc., however, we see that the base for brain activ-
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Table 4: Result of base analysis in 4-seconds time lag setting
Base number:422
Retrieved words : gliding(0.76) takeoff(0.76) landing(0.74)
takeoff and landing(0.69) runway(0.65)

58.9 49.6 43.5 13.2 12.6
Base number:269
Retrieved words : eye(0.76) pupil(0.61) round and cute(0.60)
look(0.60) stare(0.58)

42.3 17.6 12.7 12.7 12.2

Table 5: Result of base analysis in 6-seconds time lag setting
Base number:292
Retrieved words : beautiful(0.73) nice-looking(0.66)
elegant(0.66) artistic(0.63) gentle(0.61)

26.5 15.0 11.6 11.2 10.4
Base number:57
Retrieved words : book(0.76) front cover(0.66) hard
cover(0.64) booklet(0.62) bookshelf(0.62)

70.0 64.7 45.9 16.5 12.5

ity captured the feature of ”eye” through the words retrieved
by the paired base for semantic representation. Second, we
discuss the result of the case with six-seconds time lag set-
ting (see, Table 5). As for the base 292, colorful pictures are
retrieved for the top four pictures with large coefficients, and
similar adjectives whose meaning is ”beautiful” are retrieved.
This example shows us the fact that a base can express the
concepts for adjective. As for the base 57, either books or
bookshelves appear in all pictures, and the words related to
”book” are also related. Other than those above examples, we
confirmed that there are a lot of bases in which both retrieved
words and pictures have correlation.

Conclusion

We applied dictionary learning and sparse coding to recon-
struct semantic representation, which has expressed from
brain activity data evoked by videos using distributed seman-
tics provided by word2vec. Furthermore, by applying dictio-
nary learning to a combined matrix of brain activity data and
semantic representation, we succeeded in creating a dictio-
nary whose bases reflect human brain recognition. By ex-
pressing the meaning of a base for the semantic representa-
tion obtained by dictionary learning with words, we have con-
firmed there is some relation in the samples obtained by using

the same base with large coefficient. Hence it is considered
that the bases for semantic representation obtained by sparse
coding capture the features to efficiently reconstruct various
semantic representations. In addition, among the bases ob-
tained by dictionary learning, we found a base which hardly
contributes to the reconstruction of samples. Therefore, as
an assumption, it can be thought that there are not so many
dimensions of features to express semantic representations
in human brain. As future work, in this study, although we
attempted to analyze brain activity with the constraint on the
number of bases for sparse coding, we will analyze with a
proper number of bases. Furthermore, based on the results
of this study, we will investigate whether or not a specific brain
activity labeled with words happens in a particular area of the
brain in order to make a map of human recognition with words
in the brain in a different way from (A. G. Huth et al., 2012;
A. Huth et al., 2016).
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