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Abstract
Learning synaptic weights is difficult. Connec-
tions receive global error signals, which are low
dimensional and noisy, and local signals which
lack information about relative contributions to
the error.

In this setting, it makes sense for connections
to learn not just their ‘best guess’ of their weight,
but also how confident they should be in this
guess: i.e. to infer a distribution over their target
weight. This idea was developed in (Aitchison &
Latham, 2015) and (Aitchison, Pouget, & Latham,
2017). Similar concepts appear in (Hiratani &
Fukai, 2018).

In the aforementioned works the update equa-
tions are discrete in time and the likelihoods
used in inference are Markov. This is not how
things are in biology, where signals are continu-
ous in time and temporally correlated. Here we
consider a non-Markov setting, deriving coupled
ODEs which describe how the parameters of the
posterior evolve as more data is observed. We
use a local temporal-smoothing method to deal
with the continuous feedback and discrete pre-
synaptic spike events. We show that the win-
dow of smoothing can be chosen in a principled
way: maximising the per-spike decrease in un-
certainty.

We find our algorithm works better than the
leaky delta rule with optimised learning rate.
More importantly, for the simple model de-
scribed, the method accurately predicts poste-
rior variance.
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Introduction

At a high level, our hypothesis is that connections
aim to infer distributions over their target weights
from sequentially observed data. To do this, they
must update their estimates as new data is ob-
served. The mathematically correct way to do this
is by Bayes rule:

p(w∗(t)|D(0, t)) ∝

p(D(t−∆, t)|w∗(t),D(0, t−∆))p(w∗(t)|D(0, t−∆)).

Here, w∗(t) is a set of target connection strengths at
time t and D(0, t) is a set of observed data signals
on the time interval (0, t).

Such Bayesian approaches to synaptic learning
rules have been described in (Aitchison & Latham,
2015) and (Aitchison et al., 2017). A key point in
these works is that the resultant update rules for
the expected target weight do not require an arbi-
trary learning rate, η, as is the case in most classi-
cal Hebbian rules. Rather the effective learning rate
depends on the posterior variance, which comes
from doing inference. This means more uncertain
connections naturally learn faster than more certain
ones. A different approach is taken in (Hiratani &
Fukai, 2018)) to obtain an approximation to the pos-
terior by means of a particle filter. In this model,
each of the multiple synapses which constitute a
connection between two neurons is considered a
particle. During learning, the strength and location
of individual synapses are varied such that their cu-
mulative effect captures the desired statistics.
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In all the above mentioned works time is discre-
tised, updates are instantaneous and likelihoods are
Markov; they have the property

p(D(t)|w∗(t),D(0, t−1)) = p(D(t)|w∗(t)). (1)

In biological systems, where fluctuations in poten-
tials have decay times and target weight values may
drift in time, this Markov assumption does not hold.
We investigate this trickier setting below.

The model & the problem
We consider a simple model where one post-
synaptic (point) neuron receives input from N inde-
pendent pre-synaptic neurons. The ith pre-synaptic
neuron fires Poisson spikes with rate λi. A spike on
neuron i at time tk

i causes a transient post-synaptic
potential with peak amplitude w(tk

i ) and temporal
profile α(t − tk

i ) in the post-synaptic neuron. Let
{w∗i }N

i=1 be a set of unknown target weight functions
(functions of time). This defines an error signal:

δ(t) = ∑
j
(w∗j(t)−w j(t))S j(t), (2)

where S j(t) is the smoothed spike train from neuron
j.

We are agnostic as to what overall task defines
the w∗i ’s. In out model context, we can think of w∗i ’s
as latent variable. Our goal is to get (variational)
posteriors over these functions in an online way.

To derive update equations for the distribution
over target weight w∗i , we consider the problem from
the point-of-view of connection i. For connection i,
the contribution to the error from other connections
can be considered “noise”:

δ(t) = (w∗i (t)−wi(t))Si(t)+ξi(t), (3)

ξi(t) :=
N

∑
j 6=i

(w∗j(t)−w j(t))S j(t). (4)

Hence we will talk about learning from the point of
view of a connection, rather than a neuron.

The additive noise, consisting of the signals
from other connections, has temporal correlations
(E[ξ(t)ξ(t + T )] = K(T ) 6= 0). This means exact
likelihood in equation (1) would have the form

∝ exp{D(t)
∫ t

−∞

K−1(t− τ)D(τ)dτ}. (5)

In general, inverting this kernel is not possible and in
some cases, it’s not even well defined!

To overcome this problem, we consider an ap-
proximation which allows us to parameterise how
much signal to extract from the feedback in a “win-
dowed” manner after each spike. This avoids having
to invert these kernels.

Approximate Version
Consider time-averaging the error signal for a short
interval after spike k arrives:

δ̄ε(tk
i ) :=

∫ tk+ε

tk
δ(τ)dτ (6)

=(w∗i (t
k
i )−wi(tk

i ))S̄i,ε(t)+ ξ̄i,ε(t). (7)

Where we have assumed that the change in weights
is negligible over this period, ε. We have now intro-
duced a free model parameter, ε, which we will set
in a principled way later.

For inference we assume the only global informa-
tion available to all connections is the error, δ. Each
connection also receives local information: their own
spike times (tk

i ), their own implemented weights
(wi(tk

i )) and the PSP shape, α(t). We also assume
they know the prior over target weight distributions.
Hence we can write D(0 : t) = {δ(0 : t),w(tk

i ), t
k
i }

for all tk
i < t.

Given a prior distribution p(w∗i (t
k
i )|Di(0 : tk

i )),
how should connection i update this distribu-
tion when spike k arrives and it observes
{δ(tk

i ),w(t
k
i ), t

k
i }? We propose the connection inte-

grates the error signal for the period ε after the spike.
From equation (7), we have

p(δ̄ε(t)|w∗i (tk
i ),wi(tk

i )),D(0 : tk
i )) = p(ξ̄ε,i(t)). (8)

This is our likelihood distribution and it can be shown
that, for our model problem, it is approximately
Gaussian1 with statistics

E[ξ̄ε(t)] =0, (9)

V[ξ̄ε(t)]≈ Avg j 6=i[λ jσ
2
j(t)]C[ε,α], (10)

1Omitted for brevity. See:
www.gatsby.ucl.ac.uk/∼antrobus/CCN2019 supp mat.pdf
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where Avg j 6=i[·] indicates the empirical average over
the other connections and C[ε,α] is shorthand to
denote a constant scale which depends only on ε

and α. If we assume that the prior is also Gaussian,
p(w∗i (t

k
i )|Di(0 : tk

i )) = N (µi,k−1(tk
i ),σ

2
i,k−1(t

k
i )) (the

second subscript indicates how many spikes have
been seen) we can use standard results to obtain
discrete increments of the mean and variance for
each spike (omitted due to space constraints, see
1).

Choosing ε : Equation (11) is the discrete change
in the posterior variance after a spike arrives and
is clearly always negative. It can be shown that
this quantity is zero in the limits that ε → 0 and
ε→ ∞. Hence we can set ε to the value for which
this is most-negative, i.e. for which each spike max-
imally decrease the variance (see supplementary
material1). Now that we have “fixed” ε, we will drop
it from our notation for simplicity.

∆σ
2
i (t

k
i ) =

(
−σ4

i,k−1(t
k
i )S̄

2(tk
i )

σ2
i,k−1(t

k
i )S̄2(t)+V[ξ̄(tk

i )]

)
(11)

Drift and biophysical approximations: So far we
know how to update the posterior after each spike
but what happens in between spikes? Far from a
spike, the error signal is not telling the connection
much about its own contribution to the error. Rather,
since the connection is not receiving information, we
should expect its uncertainty (i.e. variance) to in-
crease and the posterior to regress to the original
prior distribution, p(w∗i ). This effect is captured by
the drift terms in equations (15) and (16).

Equation (11) and its analogy for µ give us dis-
crete, per-spike updates. So, ignoring drift for now,
we could write the value of µi,k(t) for t >> tk

i as

µi,k(t) =µi,k(0)+
k

∑
l=1

∆µi(t l
i ) (12)

≈µi,k(0)+
k

∑
l=1

∆µi(t l
i )σ(t− tk

i ) (13)

dµi,k

dt
(t)≈

k

∑
l=1

∆µi(t l
i )

dσ(t− tk
i )

dt
(14)

where σ(t) is a sigmoidal function satisfying 0 ≤
σ(t) < 1. The integral of the (normalised) PSP

shape, α, is just such a sigmoid, so we can “smooth”
our updates out in time by multiplying them by the
PSPs.

In the end, we obtain equations (15) and (16) as
our final learning rules. Equation (15) is made of
two parts. The first two terms are the drft compo-
nent: the prior pulls the mean back towards the prior
mean, µi,0. The Third term looks Hebbian: a prod-
uct of a learning rate, the error and the PSP. We
can see that each neuron’s learning rate depends
on the ratio of its variance and the variance of the
smoothed noise. This means connections with high
uncertainty (large variance) learn faster. The learn-
ing rule for the precision also has a drift component,
pulling it up to the prior variance σ2

0 (which is typi-
cally large) and a data-driven component, which is
always negative but approaches zero for highly con-
fident connections (σ2(t)→ 0).

d
dt

µi(t) =

τ
−1
w (µi,0−µi(t))+

σ2
i (t)ᾱ/|α|

ᾱ2σ2
i (t)+V[ξ̄i(t)]

δ(t)Si(t)

(15)

d
dt

σ
2
i (t) =

2τ
−1
w

(
1−

σ2
0

σ2
i (t)

)
− σ4

i (t)ᾱ
2/|α|

ᾱ2σ2
i (t)+V[ξ̄i(t)]

Si(t).

(16)

Results
A natural benchmark is testing if this algorithm
against the leaky delta rule (LDR: equation (17)).
The learning rate (η) is numerically optimised in
mean-square error of the output for each set of sim-
ulation parameters.

d
dt

µi(t) = τ
−1
w (µi,0−µi(t))+ηδ(t)Si(t). (17)

This rule only tracks a point-estimate for the ex-
pected weight, not the variance. For our simulations
we used a log-normal distribution of presynaptic fir-
ing rates, to mimic distributions commonly found in
biology (Shafi et al., 2007).

251



Due to space limits, we present just the take-
home point: Figure 1 shows that the Bayesian rule
does significantly better than the optimised Hebbian
rule in mean squared error of the output (a), as well
as achieving a smaller error between the posterior
mean and the ground-truth target values (b).

If the Bayesian rule is doing a reasonable job of
inference, we find that true target value to be within
1−σ(t) of µ(t) about 68% of the time. In the sim-
ulation presented here, we find that out means are
within this interval 72.26±3.64% of the time.
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Figure 1: (a) Mean square error in output in units
of the inference algorithm mean square error. The
leaky-delta rule is approximately 50% worse than
the inference method. Both methods are much bet-
ter than the control, achieving approximately 10−2

the control error. (b) Square-difference between the
posterior means and the target weights, averaged
over the 100 neurons. Shaded area is one stan-
dard deviation computed over neurons. The infer-
ence method achieves a lower average and much
tighter variance.
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