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Abstract: 

In this work we address two inter-related issues.  First, 
the computational roles of the orbitofrontal cortex (OFC) 
and hippocampus in value-based decision-making have 
been unclear, with various proposed roles in value 
representation, cognitive maps, and prospection.  
Second, reinforcement learning models have been slow 
to adapt to more general problems in which the reward 
values of states may change over time, thus requiring 
different Q values for a given state at different times.  We 
have developed a model of artificial general intelligence 
that treats much of the brain as a high dimensional 
control system in the framework of control theory.  We 
show with computational modeling and combined fMRI 
and representational similarity analysis (RSA) that the 
model can autonomously learn to solve problems and 
provides a clear computational account of how a number 
of brain regions, particularly the OFC, interact to guide 
behavior to achieve arbitrary goals. 
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Introduction 

A significant limitation of both model-based and 
model free RL is that typically there is only a single 
ultimate goal.  Q-values (Watkins & Dayan, 1992) are 
thus learned in order to maximize a single reward value.  
In contrast, real organisms will find differing reward 
values associated with different goals at different times 
and circumstances.  This implies that goals will change 
over time, and re-learning Q-values with each goal 
change would be highly inefficient.  Instead, a more 
flexible mechanism will dynamically assign values to 
various goals and then plan accordingly.    

Methods 

We developed the Goal-Oriented Learning and 
Sequential Action (GOLSA) model as a new approach 
to overcome the limitations of less flexible Q-values, 
while maintaining fidelity to known biological 
mechanisms and constraints such as localist learning 
laws. The model treats the brain as a high-dimensional 
control system. It drives behavior to maintain multiple 
and varying control theory set points of the agent’s 

state, including low level homeostatic and high level 
cognitive states.  The model learns the structure of state 
transitions, then plans actions to arbitrary goals via a 
novel hill-climbing algorithm inspired conceptually by 
Dijkstra’s algorithm (Dijkstra, 1959), and similar to that 
used in GPS navigation devices.  The model provides a 
domain-general solution to the problem of solving 
problems and performs well. 

The GOLSA model works by representing each 
possible state of the agent and environment in a 
network layer, with multiple layers each representing 
the same sets of states (Figure 1). The Goal Gradient 
layer is activated by an arbitrarily specified desired 
(Goal) state and spreads activation backward along 
possible state transitions represented as connections in 
the network.  The Adjacent States layer receives input 
from a node representing the current state of the agent 
and environment and activates representations of all 
states that can be achieved with one state transition.  
The valid adjacent states then mask the Goal Gradient 
layer to yield the Desired Next State representation, 
which if achieved, will move the agent one step closer 
to the goal state.  With that, the desired next state is 
mapped onto an action that is likely to effect the desired 
transition. 

 

Figure 1: GOLSA model determines next desired 
state by hill climbing. 
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Results 

Behaviorally, we found that the GOLSA model is able 
to learn to solve arbitrary problems (Figure 2).   

 

Figure 2: The GOLSA model learns to solve the 
Tower of Hanoi problem with arbitrary starting and 

desired ending states, with no hardwired task 
information. 

 

To test the GOLSA model further, we use model-
based fMRI with representational similarity analysis 
(RSA) (Kriegeskorte, 2008). We found that in addition 
to solving complex planning problems, the GOLSA 
model provides a novel computational account of 
network interactions of a number of brain regions 
involved in flexible action planning (Figure 3).  The 
orbitofrontal cortex activity patterns match model 
components that represent both a cognitive map 
(Wilson, Takahashi, Schoenbaum, & Niv, 2014) and a 
flexible goal value representation (Schoenbaum, 
Takahashi, Liu, & McDannald, 2011), specifically 
matching the Goal and Goal Gradient layer activities.  
The hippocampus and striatum represent a conjunction 
of the current state and desired future state transitions 
(Buckner, 2010), which in the model is a necessary step 
toward selecting an appropriate action. The model and 

RSA analyses account for specific roles of visual cortex, 
anterior inferior temporal cortex, and motor cortex as 
well. 

 

Figure 3: Representational Similarity Analysis of 
model layers vs. human subjects performing the same 

problem solving task. 

 

Conclusion 

Our results suggest a novel computational account of 
how the brain plans actions to solve problems, and how 
a number of brain regions perform interacting 
computational roles to such behavior. The orbitofrontal 
cortex represents a cognitive map of which state 
transitions are possible and also assigns value flexibly 
by activating the representation of whatever state is 
currently a desired goal state. 
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