
ABC-NN: Approximate Bayesian Computation with Neural Networks to learn
likelihood functions for efficient parameter estimation

Alexander Fengler (alexander fengler@brown.edu)
Department of Cognitive Linguistic and Psychological Sciences, Brown University, 190 Thayer Street

Providence, RI 02912 United States

Michael J. Frank (Michael Frank@brown.edu)
Department of Cognitive Linguistic and Psychological Sciences, Brown University, 190 Thayer Street

Providence, RI 02912 United States

Abstract
In cognitive neuroscience, computational modeling of-
fers a principled interpretation of the functional demands
of cognitive systems. Bayesian parameter estimation
provides information about the full posterior distribu-
tion over likely parameters. Importantly, the set of mod-
els with known likelihoods is dramatically smaller than
the set of plausible generative models. Approximate
Bayesian Computation (ABC) methods facilitate sampling
from posterior parameters for models specified only up to
a data generating process, overcoming this limitation to
afford bayesian estimation of complex stochastic models
(Wood, 2010; Beaumont, 2010; Akeret, Refregier, Amara,
Seehars, & Hasner, 2015; Turner & P., 2014). Relying
on model simulations to generate synthetic likelihoods,
these methods however come with substantial compu-
tational cost at inference where simulations are typically
conducted at each step in a MCMC algorithm. We propose
a method that learns an approximate likelihood over the
parameter space of interest, using multilayered percep-
trons (MLPs). This incurs a single upfront cost, but the
resulting network comprises a usable likelihood function
that can be freely used in standard inference algorithms.
We test this approach in the context of drift diffusion mod-
els, a class of cognitive process models commonly used
in the cognitive sciences to jointly account for choice and
reaction time data in a variety of experimental settings
(Ratcliff, Smith, Brown, & McKoon, 2016).

Keywords: ABC, Neural Networks, DDM

General Idea
The main shortcoming of current approximate bayesian infer-
ence (ABC) approaches to parameter estimation is the com-
putational burden incurred by performing model simulations
inside of MCMC algorithms. These burdens are especially
salient in scenarios in which analytically intractable models
are used and where one wishes to conduct model compari-
son over various hierarchical model extensions (illustrated in
Figure 1). Simulations need to be run for every combination of
parameters searched, for each step in each chain, and for ev-
ery model variant (e.g., in a cognitive task with multiple condi-
tions, researchers often test models in which one or any num-
ber of parameters may or may not vary per condition). An

application of ABC methods in these scenarios may limit thor-
ough exploration of alternative variants simply for pragmatic
computational reasons. Our goal here is to make this process
more computationally efficient and to permit model estimation
for otherwise intractable models.

Figure 1: Purchase of ABC-NN for Hierarchical Model Exten-
sions

The basic idea of our approach is to separate the model
simulation / likelihood estimation stage from the inference
stage. More specifically, we attempt to separate the MCMC-
algorithms, employed locally by researchers at the inference
stage, from the generation of approximate likelihoods, which
can be computed up-front for a given model class over a range
of parameters and stored as a function, which can then be
called directly or inside software packages (e.g., HDDM: hi-
erarchical bayesian estimation of the drift diffusion model in
Python (Wiecki, Sofer, & Frank, 2013)). While a likelihood
function is analytically available for many popular models (e.g.,
the DDM), even slight change to these models may not have
analytical forms (e.g., a DDM with a collapsing bound). We
propose here a machine learning approach, using model sim-
ulations across parameters to learn the likelihood function up-
front with the help of a multi-layered-perceptron (MLP, also
simply referred to as neural network in the following). Once
such an approximate likelihood function is provided, simulat-

260

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0

ing the DGP (Data Generating Process), is then not neces-
sary at the stage of inference, during which MCMC-algorithms
need only to evaluate the function, reducing the costs of
bayesian inference back to what is typical for analytic likeli-
hood functions. Figure 2 illustrates the idea in terms of the
change in the corresponding MCMC algorithm for inference.

Figure 2: Left is the standard ABC approach where the DGP
sits inside the markov chain. Right the MCMC algorithm
where the likelihood is provided by a neural network l̂NN

Using this approach we can learn the likelihood manifold
for a given model into a neural network first, and then provide
researchers with the learned network (set of weights, requir-
ing only matrix algebra) to be used for inference. We hope to
exploit model simulations to directly inform an interpolation al-
gorithm that can leverage regularities in the global structure of
the likelihood manifold and then apply them during inference
without need for further simulation.

Tested Model
As an intial test we focus on the viability of our approach to the
DDM, a popular model of decision making in which reaction
times and decisions are described as the crossing of one of
two boundaries of a single diffusion process, and for which the
analytical likelihood is available (and hence can be used as a
benchmark) but non trivial. Figure 3 provides a an illustration
of the DDM model.

For a starting point w, drift µ, and (symmetric) functional
shape of the boundaries g(t), we have two defective prob-
ability distributions f+ and f−, which jointly provide the first
passage distribution of (upper and lower) boundary cross-
ings (Ratcliff, 1978) of some associated stochastic process
X(t;w,µ). For a given set of parameters (w,µ), the time
integral of the sum of the two defective probability distribu-
tions f = f−+ f+ is a valid probability density. For a given
data point, where the choice c ∈ {−,+}, and reaction time
t ∈ (0,+∞), we can describe it’s likelihood given parameters
of the model as, fc(t;w,µ). As described above, our problem
is that f+ and f− are given in analytic form only for a small
class of models (e.g., for the DDM in which the drift rate and

Figure 3: Drift Diffusion Model (DDM)

decision boundary are fixed across time), even though there
are many situations in which these assumptions are unten-
able, motivating ABC approaches in the first place. To get an
approximation for the likelihood of (c, t), given (w,µ) and g(t),
Turner et. al. (2014), suggest the following approach. We
simulate the process to get an artificial data set (for example
using Euler Maruyama), D = {(c1, t1), ...,(cn, tn)}, which we
split according to whether c = +, or c = −, and re-index, to
create two separate data-sets D+ = {(+, t11), ...,(+, t1n1)},
D− = {(−, t21, ...,(t2n2)}. Computing the proportion of upper

and lower boundary crossings respectively as, p+ = |D+|
|D−|+|D+|

and p− = |D−|
|D−|+|D+| , and choosing some kernel density esti-

mator, (KDE) we end up with approximations to f+ and f−
as,

f̂+(t;w,µ) = p+ ∗KDE(t;D+)

f̂−(t;w,µ) = p− ∗KDE(t;D−)

which, can then be used inside any MCMC algorithm.
The approach proposed here is to use f̂+ and f̂−, so com-

puted, not inside the Markov Chain, but instead to form a train-
ing set to serve the training of Neural Network, which learns
an approximate likelihood function l̂NN(t,c;w,µ) for the rele-
vant parameter space a priori.

Preliminary Results
DDM: Training on known likelihood
We attempt to fit the first passage distribution of a standard
DDM (constant boundaries at level 0 and a). The functional
form for the probability density of lower barrier crossings at
time t (similar for upper barrier crossings) given parameters
(µ,a,w) is (Feller, 1968),

f (t|µ,a,w)= π

a2 exp
(
−µaw− µ2t

2
) ∞

∑
k=1

k exp
(
− k2π2t

2a2

)
sin(kπw)

The parameter space under consideration was restricted
to, (µ,w,a) ∈ [−2.5,2.5] × [0.15,0.85] × [0.5,3]. A data

261

set of 54.000.000 examples was generated on which the
NN’s were trained. A training data point has the form
{(µi,wi,ai,ci,rti),(`i)} where (µi,wi,ai,ci,rti) is the set of
features or inputs and `i is the corresponding label or out-
put. The training examples were generated from the following
mixture distribution. First, a set of parameters (µi,ai,wi) was
sampled uniformly from the parameter space of interest. Then
(ci,rti) were sampled from a mixture distribution of three com-
ponents.

The first component, with p3 = 0.9, produced joint choice
and reaction time samples directly from the drift diffusion
process given the previously sampled parameters (µi,ai,wi).
The second component, with p1 = 0.05, samples a choice
ci ∼ B(0.5) and a reaction time rti ∼ N (0,1). The purpose
of this component is to ensure that the network encounters
training examples close to and below 0 on the reaction time
axis, to ensure a collapse towards 0 of the learned likelihood
close to 0. The third component, with p2 = 0.05 samples
choice ci ∼ B(0.5) and reaction time rti ∼ U([5,20]) to en-
sure that the training set contains reaction-time-outliers for a
any given parameter set. While these proportions were not
chosen based on some strict theoretical justification (more
principled approaches are in progress, e.g. active sampling of
parameters for more uncertain regions), empirically they were
enough to constrain behavior of the learned manifolds. Finally,
we split the resulting data-set into a training and test set using
ptrain = 0.8.

Next we performed a hyperparameter search over NN ar-
chitectures. A random search over architectures was per-
formed, ranging from 3-5 hidden-layers and between 20-60
nodes by layer. The best performing model was close to
ceiling on both hyper-parameters, with 5 hidden layers and
(50,60,50,50,60) nodes by layer. From here we increased
the architecture size to 6 hidden-layers, and tested a setup
with 80 nodes and 100 nodes each and sigmoid-activation
functions throughout, yielding the currently best performing
network with (100,100,100,100,100) nodes and test MSE
of 0.0009. Increasing the network size to 120 nodes each
did not further improve performance. We plan to test deeper
networks going forward.

The following approach was used for a parameter recov-
ery study to test the performance of our network for infer-
ence. We sample 100 parameter sets (µi,ai,wi) uniformly
from [−2.5,2.5]× [0.15,0.85]× [0.5,3]. For each parameter
set, we simulate the corresponding data generating process,
5000 (2500, 500, 100) times and record the respective choice
outcomes. For each set of parameters, we attempt parameter
recovery via maximum likelihood methods. For this purpose, a
simple genetic algorithm was used (population size: 40, steps:
25, mutation probability: 0.1), but other approaches such as
simplex or MCMC for full bayesian inference will work similarly.
Figures 4 and 5 illustrate our preliminary results.

DDM: Training on empirical likelihood
While the previous section demonstrated the viability of the
approach when a known analytic likelihood is used to train

Figure 4: DDM: Parameter Recovery

Figure 5: DDM: Parameter Recovery across data set sizes

the network, here we assess the potential when this likelihood
is not known, but instead provided via empirical likelihoods
using KDE. Specifically, rather than providing as f (t|µ,a,w)
in training the actual likelihood function,

f (t|µ,a,w)= π

a2 exp
(
−µaw− µ2t

2
) ∞

∑
k=1

k exp
(
− k2π2t

2a2

)
sin(kπw)

we instead provide at each training step the approximate
(empirical) likelihood (generated using Gaussian Kernel Den-
sity Estimates on top of realizations of model simulations).
While this procedure is more computationally intensive (more
samples needed for each training step), it is again a one-off
cost. Notably, we were able to perform MLE-based model re-
covery with similar precision, thus serving as validation of our
general method, and a stepping stone towards application to
models where we have no access to the ground truth (likeli-
hood function) to begin with. The results are shown in Figure
6.

Current Development / Future Directions
The current results provide only the first steps necessary for
scaling up the approach for use more widely. First, there is
still room for improvement of training procedures of the neural
networks. Access to the data generating process, predestines

262

Figure 6: DDM: Parameter Recovery using empirical likeli-
hoods in training

our method for implementation of online learning. Moreover,
online learning in turn allows the opportunity to apply ideas
from active learning (Bachman, Sordoni, & Trischler, 2017),
essentially an interaction between the state of learning of the
model and and the specifics of the training data generation
process. Second, we are currently validating more compli-
cated models, such as DDM with dynamically varying param-
eterized boundaries (e.g., collapsing bounds) and other mod-
els such as the leaky competing accumulator (LCA). Third, we
aim to provide researchers with two interfaces to the method
proposed in this report. An interface to perform Bayesian in-
ference with pre-learned approximate likelihoods of standard
models in the literature, and an interface that provides re-
searchers with a training pipeline for user supplied process
models.

Acknowledgments

References

Akeret, J., Refregier, A., Amara, A., Seehars, S., & Hasner,
C. (2015). Approximate bayesian computation for forward
modeling in cosmology. Journal of Cosmology and As-
troparticle Physics.

Bachman, P., Sordoni, A., & Trischler, A. (2017, August).
Learning Algorithms for Active Learning. Proceedings of the
th International Conference on Machine Learning, 1–10.

Beaumont, M. A. (2010, December). Approximate Bayesian
Computation in Evolution and Ecology. Annual Review of
Ecology, Evolution, and Systematics, 41(1), 379–406.

Feller, W. (1968). An introduction to probability theory and its
applications vol 1. Wiley.

Ratcliff, R. (1978). A theory of memory retrieval. Psycholoical
Review , 85(2), 59–108.

Ratcliff, R., Smith, P., Brown, S., & McKoon, G. (2016). Dif-
fusion decision model: Current issue and history. Trends in
Cognitive Sciences, 20(4), 260–281.

Turner, B., & P., S. (2014). A generalized, likelihood-free
method for posterior estimation. Psychological Bulletin,
21(2), 227–250.

Wiecki, T. V., Sofer, & Frank, M. (2013, jul). Hddm: Hier-
archical bayesian estimation of the drift-diffusion model in
python. Frontiers in neuroinformatics, 7 , 1–10.

Wood, S. (2010). Statistical inference for noisy nonlinear eco-
logical dynamic systems. Nature, 466(26).

263

