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Abstract
In the last decade, artificial intelligence (AI) models in-
spired by the brain have made unprecedented progress
in performing real-world perceptual tasks like object clas-
sification and speech recognition. Recently, researchers
of natural intelligence have begun using those AI mod-
els to explore how the brain performs such tasks. These
developments suggest that future progress will bene-
fit from increased interaction between disciplines. Here
we introduce the Algonauts Project as a structured
and quantitative communication channel for interdisci-
plinary interaction between natural and artificial intelli-
gence researchers. The project’s core is an open chal-
lenge with a quantitative benchmark whose goal is to
account for brain data through computational models.
This project has the potential to provide better models
of natural intelligence and to gather findings that ad-
vance AI. The 2019 Algonauts Project focuses on bench-
marking computational models predicting human brain
activity when people look at pictures of objects. The
2019 edition of the Algonauts Project is available online:
http://algonauts.csail.mit.edu/.

Keywords: human neuroscience; vision; object recognition;
prediction; challenge; competition; benchmark

Introduction
The quest to understand the nature of human intelligence and
engineer advanced forms of artificial intelligence (AI) are in-
creasingly intertwined (Hassabis, Kumaran, Summerfield, &
Botvinick, 2017; Kriegeskorte, 2015; Yamins & DiCarlo, 2016).
To explain human intelligence, we require computational mod-
els that can handle the complexity of real-world tasks. To en-
gineer artificial intelligence, biological systems can provide in-
spiration and guidance of how to solve the task efficiently.

With this algorithmic exploration paradigm for explaining the
brain, it is becoming essential to have standardized bench-
marks for comparing how well different algorithms account for
neural data. Open challenges are a particular form of stan-
dardized benchmark that foster fast-paced advance in a col-
laborative and transparent manner.

Open challenges have helped science to thrive in many
times and fields. As early as 1900, Hilbert proposed 23 prob-

lems as challenges in mathematics to be solved. More re-
cently, benchmarks for open competition have emerged in
other disciplines such as robotics (e.g. the DARPA robotics
challenge) and computer science on a diverse sets of topics
including visual recognition (Everingham et al., 2015; Rus-
sakovsky et al., 2015; Zhou et al., 2019)), reasoning (Johnson
et al., 2017) and natural language understanding (Wang et
al., 2018). Those challenges are well accepted in the their
scientific communities and suggest standardized benchmarks
as fruitful platforms for collaboration.

Inspired by these approaches, we propose a challenge plat-
form with standardized benchmarks for the artificial and bio-
logical sciences. At the core of the platform is an open com-
petition with the goal of accounting for brain activity through
computational models and algorithms. We coin the platform
the Algonauts Project. Inspired by the astronauts (i.e. sailors
of the stars) who launched into space to explore a new fron-
tier, the algonauts (i.e. sailors of algorithms) set out to relate
brains and computer algorithms in an exploratory way.

We believe that the Algonauts Project will facilitate the
interaction between biological and artificial intelligence re-
searchers, allowing the communities to exchange ideas and
advance both fields rapidly and in a transparent way.

The 2019 Edition of the Algonauts Project:
Explaining the Human Visual Brain

The 2019 edition is the first edition of the Algonauts Project’s
challenge and workshop. It is titled ”Explaining the Human Vi-
sual Brain”, and its specific target is to determine which com-
putational model best accounts for human visual brain activity.

We focus on visual object recognition as it is an essen-
tial cognitive capacity of systems embedded in the real world.
Visual object recognition has long fascinated neuroscientists
and computer scientists alike, and it is here that the recent ad-
vances in AI and their adoption into neurosciences have taken
place most prominently. Currently, particular deep neural net-
works trained with the engineering goal to recognize objects
in images do best in accounting for brain activity during visual
object recognition (Schrimpf et al., 2018; Bashivan, Kar, & Di-
Carlo, 2019). However, a large portion of the signal measured
in the brain remains unexplained. This is so because we do
not have models that capture the mechanisms of the human
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brain well enough. Thus, what is needed are advances in
computational modelling to better explain brain activity.

Related challenges in neuroscience. The 2019 edi-
tion ”Explaining the Human Visual Brain” relates to ini-
tiatives such as the The neural prediction challenge
(http://neuralprediction.berkeley.edu/) and brain-
score (http://www.brain-score.org/) (Schrimpf et al.,
2018) that provide benchmarks and leaderboards. The Algo-
nauts Project emphasizes human brain data, and an auto-
mated submission procedure with immediate assessment. It
couples neural prediction benchmarks to a challenge limited
in time, and adds educational and collaborative components
through the accompanying workshop.

Materials and Methods
The target of the 2019 challenge is to account for activity in
the human visual brain responsible for object recognition. This
is the so-called ventral visual stream (Grill-Spector & Malach,
2004), a hierarchically ordered set of brain regions in which
neural activity unfolds across regions in space and time when
human beings see an object. It starts with early visual cortex
(EVC) and continues in inferior temporal (IT) cortex. Neurons
in EVC respond preferentially to simple visual features such
as oriented edges, whereas neurons in IT respond to more
complex and larger features such as object parts. Consistent
with their position in the processing hierarchy, neurons in EVC
have been found to respond to visual stimulation earlier in time
than neurons in IT. Stages of brain processing can thus be
identified both in space (different regions) and in time (early
and late). Correspondingly we have two challenge tracks.
Track 1 aims to account for brain data in space, providing data
from the start and later point of the ventral visual stream: early
visual cortex (EVC) and inferior temporal cortex (IT), respec-
tively (Fig. 1a). We provide brain data measured with func-
tional magnetic resonance imaging (fMRI1), a technique with
high spatial resolution (millimeters) that measures blood flow
changes associated with neural activity.
Track 2 aims to account for brain data in time, providing data
recorded early and late in visual processing (Fig. 1a). For this
we provide brain data measured with magnetoencephalogra-
phy (MEG) at time points identified to correspond to process-
ing in EVC and IT. MEG is a technique with very high tempo-
ral resolution (milliseconds) that measures the magnetic fields
accompanying electrical activity in the brain.

Comparison metric from brain activity and models to
challenge score. Comparing human brains and models is
challenging because of the numerous differences between
them (e.g. in-silico vs. biological, number of units). Different
approaches have been proposed (Diedrichsen & Kriegesko-
rte, 2017; Wu, David, & Gallant, 2006), and here we make
use of a technique called representational similarity analysis
(RSA) (Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013). RSA

1For more details on MEG and fMRI see
http://algonauts.csail.mit.edu/fmri and meg.html
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Figure 1: Procedure of the Algonauts 2019 edition challenge.
a) In two tracks, the goal is to account for human brain activity
measured during object perception in space and time. b) RSA
makes models and brain activity comparable, yielding c) per-
cent variance explained relative to the noisiness of the data.
d) Models are ranked in a leaderboard (i.e. for Track 2).

has low computational demands and is straightforward to im-
plement. The idea behind RSA is that models and brains are
similar if they treat the same images as similar (or equiva-
lently dissimilar). RSA is a two-step procedure. In a first step
(Fig. 1b), we abstract from the incommensurate signal spaces
into similarity space by calculating pairwise dissimilarities be-
tween signals for all conditions (images) and order them in so-
called representational dissimilarity matrices (RDMs) indexed
in rows and columns by the conditions compared. RDMs for
the different signal spaces have the same dimensions and are
directly comparable. We relate RDMs in a second step (Fig.
1c) by calculating their similarity (Spearman R). Finally, we
square the result to R2 to indicate the amount of variance ex-
plained, and display results in the leaderboard (Fig. 1d).
Noise ceiling. The noise ceiling is the expected RDM corre-
lation achieved by the (unknown) ideal model, given the noise
in the data. The noise ceiling is computed by the assump-
tion that the subject-averaged RDM is the best estimate of the
ideal model RDM, i.e. by averaging the correlation of each
subject’s RDM with the subject-averaged RDM. We use the
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Figure 2: Training and Testing Material. a) There are two sets
of training data, each consisting of an image set and brain
activity in RDM format (for fMRI and MEG). Training set 1 has
92 silhouette object images, and training set 2 has 118 object
images with natural backgrounds. b) Testing data consists
of 78 images of objects on natural backgrounds. Associated
brain data is held back and used to evaluate models online for
the leaderboard.

noise ceiling to normalize R2 values to noise-normalized vari-
ance explained. Thus, any model can explain from 0 to 100%
of the explainable variance.

Training Data. Participants can submit their models out of
the box to determine how well they predict brain activity in
each track. We also provide training data that can help opti-
mizing models for predicting brain data. We provide two sets
of training data published previously (Fig. 2a) (Cichy, Pantazis,
& Oliva, 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva,
2016). Each set consists of a set of images (92 silhouette
object images and 118 images of objects on natural back-
ground), and brain data recorded with fMRI (EVC and IT) and
MEG (early and late in time) in response to viewing those im-
ages (by 15 participants). Participants differ across training
sets but are the same across imaging modalities (MEG and
fMRI).

Testing Data and Procedure. The testing set consists of 78
images and the respective brain activity recorded with fMRI
and MEG (Fig. 2b). Participants in the challenge receive only
the images, and the brain data is held back. On the basis
of the image test set participants calculate model RDMs as
predictions of human brain activity. Participants submit the
RDMs which are compared against the held-out brain data
using RSA as described above. This results in a challenge
score and determines the relative place in the leaderboard.

Rules. To encourage broad participation the challenge con-
sists of a simple submission process. Participants can use
any model trained on any type of data, however we explicitly
forbid the use of human brain responses to the test image set.
We request participants to submit a short report to a preprint
server describing their final submitted model.

Development Kit. The development kit contains the afore-
mentioned training and testing data. In addition, we provide
example extraction code (matlab and python) to extract ac-
tivation values from models into RDMs and evaluation code
that compares model RDMs with brain RDMs, calculating the
noise-normalized score for a model.

Baseline Model. Deep neural networks trained on object
classification are currently the model class best performing in
predicting visual brain activity. We used AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012) as an example often used in neuro-
scientific studies as baseline model. AlexNet is a feedforward
deep neural network, trained on object categorization, with 5
convolutional and 3 fully connected layers. In Track 1 (fMRI),
AlexNet accounts for 6.58% (layer 2) and 8.22% (layer 8) of
noise-normalized variance in EVC and IT. In track 2 (MEG),
it accounts for 5.82% (layer 2) and 22.93% (layer 4) noise-
normalized variance in early and late visual processing.

Discussion

Challenges as scientific instruments in cognitive science.
Open challenges at the intersection of natural and artificial in-
telligence sciences hold promise for both sides. The natu-
ral intelligence sciences, in particular neuroscience and psy-
chology, might benefit in two ways. For one, open challenges
provide the incentive structure to promote and ensure trans-
parency and openness. These are values recognized to pro-
mote replicability of results (Nosek et al., 2015; Poldrack et al.,
2017). Second, challenges provide a clear and quantitatively
concise metric for success. They can thus play an important
role in guiding research by differentiating between theories:
predictive success is a necessary property of a good explana-
tory model (Kriegeskorte, 2015). The sciences creating ar-
tificial intelligence in turn might benefit, too, in several ways.
Biological systems can provide insight into how a cognitive
problem might be solved mechanistically. More specifically,
neuroscience can provide constraints on the infinite number
of free parameters when engineering a model from scratch.

Prediction vs. explanation. Challenges like the Algonauts
Project provide one measure of success: predictive power.
Having an artifact that even perfectly predicts a phenomenon
does not by itself explain the phenomenon. However, predic-
tion and explanation are related goals (Cichy & Kaiser, 2019).
For one, successful explanations ultimately must also provide
successful predictions (Breiman, 2001; Yarkoni & Westfall,
2017). Second, the ordering of models on a challenge bench-
mark can help scientist to concentrate future research efforts
in creating explanations based on the most successful mod-
els. Further, bringing success rate in connection with the mod-
els’ properties can reveal what it is about those models that is
responsible for the success. It can thus generate hypotheses
and guide the next engineering steps.

Limitations of the current approach. Constitutive for a
challenge are the choice of a particular data set and analy-
sis steps. We readily assert that we could have structured the
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challenge differently (e.g. which data to provide, in which for-
mat, how to relate brain data and models). The choices we
made were motivated by providing a low threshold to partici-
pation and a low computational load. Future challenges that
make use of other data sets (e.g. large-scale) will invite a dif-
ferent type of data format and analytic treatment. We will invite
an open discussion on those issues during the workshop.

The future of the project. We hope that the 2019 edition of
the Algonauts Project will inspire other researchers to initiate
open challenges and collaborate with the Algonauts Project.
We see potential in tackling problems that become increas-
ingly interesting to both natural and artificial intelligence com-
munities. In the context of perception, future challenges might
put the focus on action recognition or involve other sensory
modalities such as audition or the tactile sense, or focus on
other cognitive functions such as learning and memory.
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