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Abstract: 

Perceptual biases found experimentally are often taken 
to indicate that we should be cautious about the 
veridicality of our perception in everyday life. Here we 
show, to the contrary, that such biases may be a 
consequence of the experimental protocol that cannot be 
generalized to other situations. We show that the central 
tendency, an overestimation of small magnitudes and 
underestimation of large ones, strongly depends on 
stimulus order. If the same set of stimuli is, rather than 
being presented in the usual randomized order, is 
applied in an order that displays only small changes from 
one trial to the next, the central tendency decreases 
significantly. This decrease is predicted by a 
probabilistic model that assumes iterative trial-wise 
updating of a prior of the stimulus distribution. We 
conclude that the commonly used randomization of 
stimuli introduces systematic perceptual biases that may 
not relevant in everyday life. 
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Introduction 

The “central tendency” (Hollingworth, 1910) is a 
perceptual bias affecting estimation of magnitudes such 
as distance, duration, loudness, brightness, etc.: large 
magnitudes are underestimated, while small 
magnitudes are overestimated. It was first described by 
Vierordt (1868) for duration reproduction and has since 
then be re-described and rediscovered many times (see 
Glasauer & Shi, 2018). Until a few years ago, the 
findings of Vierordt have been described as an 
unexplained problem that “currently defies any coherent 
theoretical treatment” (Lejeune & Wearden, 2009). 
Even though the first study offering a quantitative 
probabilistic theory explaining the central tendency 
(Laming, 1999) was apparently overlooked by the 
scientific community, during the last few years several 
studies explained the central tendency as result of 
Bayesian estimation or similar approaches (Jazayeri & 
Shadlen, 2010; Petzschner & Glasauer, 2011; 
Bausenhart, Dyjas & Ulrich 2014; see Shi, Church & 
Meck, 2013, for review).    

However, the consequences of the underlying models 
differ to a certain extent. The model by Jazayeri & 
Shadlen (2010) assumes a static prior distribution (after 
an initial training phase). The model by Petzschner & 
Glasauer (2011) proposes that the prior distribution is 
iteratively updated from trial to trial. Therefore, the 
iterative updating model in contrast to the static model 
predicts 1) serial dependency, that is, the error in trial k 
depends on the stimulus difference between trial k and 
k-1, and 2) that the strength of the central tendency 
depends on the order of stimuli. Both consequences are 
coupled: if the error increases with increasing stimulus 
difference, then keeping differences as small as 
possible will minimize errors and, therefore, also the 
central tendency. 

This prediction, if verified, has important 
consequences that have partly been overlooked so far: 
if the central tendency depends on stimulus order, then 
experimental results using one stimulus sequence 
cannot be generalized to every other circumstance. 
Experiments demonstrating the central tendency use 
the paradigm introduced by Vierordt (1868): stimuli from 
a large range of magnitudes are randomly presented to 
the participant in the same context. Under natural 
circumstances, however, this seems to be the 
exception. If we have to estimate or reproduce 
magnitudes in daily life, subsequent stimuli in one 
context are similar or come from a small range. While 
the problem of generalizing from one experiment to the 
next has been recognized early on (see Hollingworth 
1910; Woodrow 1930), the errors found in experiments 
on magnitude estimation using Vierordt’s random order 
protocol are quite often discussed with respect to daily 
life: for example, the authors of a study on facial age 
estimation remark that “these errors can have serious 
consequences” (Clifford et al. 2018). 

Here we first demonstrate using the iterative updating 
model of magnitude reproduction (Petzschner, 
Glasauer, & Stephan, 2015) on Vierordt’s original data 
that, according to the model, the central tendency found 
by Vierordt vanishes when using the same stimuli but in 
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different order. We then confirm experimentally with a 
duration reproduction task that participants indeed 
exhibit smaller biases when stimulus order conforms to 
a random walk instead of being randomized.  

Methods 

For both parts the same model, described in Petzschner 
and Glasauer (2011), has been used with one 
difference: only one single parameter, the ratio of 
system to measurement noise, has been fitted to the 
data. Briefly, the model consists of 1) transformation of 
the sensory magnitudes to log space (Weber-Fechner 
law), 2) iterative Bayesian updating implemented as 
Kalman filter (Kalman, 1960) assuming that subsequent 
stimuli differ only by normally distributed system noise, 
and 3) transformation back to linear stimulus space. All 
software was developed using Matlab (Mathworks Inc.). 

Simulation of Vierordt’s results 

The duration reproduction data used are taken from 
Table 1 (Vierordt, 1868). Since the data are reported as 
averages for 22 duration intervals together with the 
number of stimuli per interval, we iteratively constructed 
a stimulus set with the same properties. This set was 
then randomized, simulated, and used to fit the free 
parameter of the model to Vierordt’s data. The resulting 
stimulus sequence was rearranged iteratively to 
resemble a random walk. The random walk sequence 
was used as model input (using the previously fitted 
parameter) to predict the result of a corresponding 
duration reproduction experiment.  

Experimental validation 

Participants 14 naïve volunteers (7 female, average 
age 27.4) participated in the experiment. The 
experiment was approved by the ethics committee of 
the Department of Psychology at LMU Munich. 

Stimuli As visual stimulus a yellow disk (subtended 
4.7°, 21.7 cd/m2) was presented on a 21-inch monitor 
(100 Hz refresh rate) at 62 cm viewing distance using 
the Psychtoolbox (http://psychtoolbox.org). 

Procedure Each trial started after 500 ms presentation 
of a fixation cross (Figure 1). Then the stimulus 
appeared for a predefined duration. After a short break 
of 500 ms participants were prompted to reproduce the 
duration of the stimulus by pressing and holding a key. 
At the end of the trial, a coarse visual feedback (5 
categories from <-30% to >30% error) was given for 500 
ms. Each participant performed two blocked sessions in 
balanced order. In the random walk session, 400 
stimulus durations from 400 to 1900 ms were 

presented, which were generated by a Wiener process. 
In the randomized condition, the same stimuli were 
used in scrambled order. Each participant received a 
different sequence. 

 
Figure 1: Experimental procedure for duration 

reproduction experiment. 

Data analysis Reproduction was analyzed by fitting a 
least-squares regression to stimulus reproduction 
plotted over stimulus duration for each session 
individually to quantify the central tendency. The slope 
of the regression line can directly be related to the noise 
parameter for the randomized condition (Glasauer & 
Shi, 2018). Serial dependence was assessed by 
calculating the correlation between the error in trial k 
and the stimulus difference between trial k and k-1. For 
model simulation, the individual stimulus sequences of 
the randomized condition were used to fit the noise ratio 
for each participant. The fitted noise ratio was applied 
to predict the outcome of the random walk condition. 

Results 

Simulation of Vierordt’s results 

Vierordt’s results and the model fit assuming a 
randomized stimulus order are shown in Figure 2 
together with the prediction for the random walk 
condition. Note that stimuli used for both the fit and the 
prediction were exactly the same except for the order of 
presentation. The fitted noise ratio parameter is 6.54 
and is used for both simulations. 

The model prediction shows clearly that for random 
walk order of the stimulus set the bias in duration 
reproduction should vanish or, in other words, the 
central tendency would be a consequence of 
randomized stimuli. 
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Figure 2: Vierordt’s (1868) data (open circles, 1104 

trials, one participant), best fit simulation of the data in 
randomized stimulus order (black), and simulation of 

the same stimuli in random walk order (gray). 

Experimental results 

To quantify the central tendency, we used ci=(1-slope) 
as centrality index, with slope being the slope of the 
least-squares regression to stimulus reproduction 
plotted over stimulus duration. Consequently, a value of 
ci=0 indicates no central tendency and veridical 
reproduction. A repeated measures ANOVA of the 
centrality indices showed a significant effect of 
condition [F(27,1)=53.5, p<0.0001] with the average 
index close to 0 (mean±SD 0.095±0.138) for the 
random walk, but much higher centrality index 
(0.456±0.173) for the randomized sequence. The 
average reproduction errors are shown in Figure 3 in 
the same format as in Figure 2 for comparison.  

 
Figure 3: Average experimental results for the 

duration reproduction experiment (n=14; 400 trials per 
participant) for random walk (black) and randomized 
(white) stimulus order. Error bars denote standard 

error of the mean. 

While our participants exhibited much higher errors 
than Karl Vierordt (see Figure 2), the overall result for 
the randomized condition is comparable. The random 
walk condition confirms the model prediction that errors 
should depend on stimulus order and decrease for the 
random walk. We also fitted the model individually to 
the randomized condition and used the parameter to 
predict the outcome of the random walk condition. 
However, the predicted errors in the random walk 
condition were considerably smaller than found 
experimentally. Closer inspection of the data showed 
that even though the centrality index was smaller in the 
random walk condition for every single subject, there 
were considerable differences between participants. 

  To assess the serial dependence, we calculated the 
correlation between the error in trial k and the stimulus 
difference between trial k and k-1 for the randomized 
condition. The average correlation coefficient (mean 
0.53; SD 0.11) was significantly different from zero (t-
test p=<0.0001). A similar result was found for the 
regression slope.  

Discussion 

We demonstrated using the historical data provided by 
Vierordt (1868) that a contemporary model of 
magnitude reproduction (Petzschner & Glasauer 2011) 
predicts that the central tendency found by Vierordt and 
confirmed later by others (Hollingworth 1910; Lejeune 
& Wearden 2009; Shi et al., 2013) is a consequence of 
randomizing stimuli. We confirmed by a duration 
reproduction experiment similar to that performed by 
Vierordt that the central tendency indeed becomes 
significantly smaller for a stimulus order that imposes 
only small changes from one stimulus to the next and 
resembles a random walk. 

The dependence on stimulus order and the serial 
dependence found also allows to distinguish two 
classes of models: models assuming a static prior 
(Jazayeri & Shadlen, 2010) vs. models assuming 
iterative updating (Petzschner & Glasauer 2011; 
Bausenhart et al., 2014). Models with static prior would 
predict exactly the same results independent of 
stimulus order and no serial dependence, while all our 
participants showed a decrease of central tendency for 
the random walk condition and a strong serial 
dependence in the randomized condition.  

The generative model underlying the iterative 
estimation process assumes that the stimulus 
magnitude xk at trial k is equal to the magnitude at the 
previous trial plus some random amount ε, which is 
normally distributed with zero mean and known 
variance. Thus, the model is optimal, if the presented 

0 2 4 6 8 10
mean target time (s)

-10

-5

0

5

10

15

20
pe

rc
en

ta
ge

 e
rro

r o
f r

ep
ro

du
ct

io
n simulation (randomized)

experimental data
simulation (Wiener process)

0 0.5 1 1.5 2
mean target time (s)

-20

0

20

40

60

pe
rc

en
ta

ge
 e

rro
r o

f r
ep

ro
du

ct
io

n random walk
randomized

270



magnitudes indeed follow a random walk. 
Consequently, the bias observed in randomized 
experiments is indeed suboptimal, because the 
stimulus generation does not match the model used by 
the perceptual estimation process (for discussion of 
suboptimality, see Rahnev & Denison 2018). We 
conclude that magnitude perception is tuned to natural 
circumstances, where subsequent magnitudes within 
the same context are similar and adhere to a random 
walk. Thus, the experimentally used randomized 
stimulus order is what is suboptimal. For the majority of 
participants in our experiment, the iterative (but 
inappropriate) model provided the best fit in the 
randomized condition. Thus, the perceptual process 
apparently is not flexible enough to switch to a more 
appropriate model, which would assume that stimuli are 
drawn randomly from a fixed interval, and thus would 
iteratively estimate that interval. 

Finally, our results demonstrate that the central 
tendency, as suspected by others before (e.g. 
Woodrow 1930), is a consequence of the experimental 
protocol used first by Vierordt and later by many others. 
The results obtained in these experiments can, 
therefore, not be generalized to other situations, as still 
is customary (e.g., Clifford et al. 2018). Interestingly, 
Vierordt (1868) claimed that he used Fechner’s 
“method of average error” (1860), but Fechner’s 
descriptions of the method clearly state that the same 
stimulus was presented repeatedly and that, if multiple 
stimuli were presented in one session, the stimuli were 
presented in blocks with increasing or decreasing 
magnitude. It therefore seems that Vierordt 
misinterpreted Fechner’s description and, by changing 
the experimental protocol, induced the systematic bias 
now known as central tendency or, in timing research, 
as Vierordt’s law. 
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