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Abstract: 

Many recent advances in artificial intelligence (AI) are 
rooted in visual neuroscience.  However, ideas from 
more complicated paradigms like decision-making are 
less used. Although automated decision-making 
systems are ubiquitous (driverless cars, pilot support 
systems, medical diagnosis algorithms etc.), achieving 
human-level performance in decision making tasks is 
still a challenge. At the same time,  these tasks that are 
hard for AI are easy for humans. Thus, understanding 
human brain dynamics during these tasks and modeling 
them using deep neural networks could improve AI 
performance. Here we modelled some of the complex 
neural interactions during a sensorimotor decision 
making task. We investigated how brain dynamics 
flexibly represented and distinguished between sensory 
processing and categorization in two sensory domains: 
motion direction and color. We found that neural 
representations changed depending on context. We also 
trained deep recurrent neural networks to perform the 
same tasks as the animals. By comparing brain 
dynamics with network predictions, we found that 
computations in different brain areas also changed 
flexibly depending on context. Color computations 
appeared to rely more on sensory processing, while 
motion computations more on abstract categories. Our 
results shed light to the biological basis of 
categorization and differences in selectivity and 
computations in brain areas.  
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categories;  deep neural networks.  

A Flexible Decision Making Task  

We reanalyzed data previously published in (Siegel et 
al., 2015) using Representation Similarity Analysis 
(RSA; Kriegeskorte et al., 2008) and deep recurrent 
neural networks (RNNs). Monkeys performed the task 
shown in Fig. 1. They categorized motion direction and 
color of centrally presented, colored random dot stimuli 

(Fig. 1A). Before stimulus onset, a central cue indicated 
which feature to categorize. Monkeys indicated their 
choice with a leftward or rightward saccade and held 
central fixation throughout each trial until their 
response. Monkeys were free to respond any time up to 
3 s past stimulus onset. We analyzed data from the 
epoch after stimulus onset until average response 
latency (1s to 1.27s; t=0 corresponds to cue onset). 
Stimuli systematically covered motion direction, and 
color space between opposite motion directions (up and 
down) and opposite colors (red and green; Fig. 1B). 
There were 7 possible stimulus motion directions and 7 
possible colors. In total, there were 42 stimulus 
conditions. Depending on the task cued at the 
beginning of each trial, the animals categorized either 
the motion direction (up vs. down) or color (red vs. 
green) of the stimulus. We recorded LFP data from 6 
cortical areas shown in Fig. 1C. 

 

Figure 1: (A) Monkeys categorized the motion 
direction, or color, of centrally presented, colored 
random dot stimuli. Before stimulus onset, a central cue 
indicated which feature to categorize. Monkeys 
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indicated their choice with a leftward or rightward 
saccade and held central fixation throughout each trial 
until their response. Monkeys were required to respond 
within 3 seconds after the stimulus onset. For each trial, 
we analyzed the data from the stimulus onset to the 
average response latency (1s to 1.270s) (B) Stimuli 
systematically covered motion, direction, and color 
space between opposite motion directions (up and 
down) and opposite colors (red and green). All stimuli 
were 100% coherent, iso-speed, iso-luminant, and iso-
saturated. (C) Schematic display of the recorded brain 
regions. See also (Siegel et al., 2015) for more details. 

Differences in representations between 
brain areas 

To understand neural representations in different brain 
areas during this flexible decision task, we used two 
approaches. We computed 1) the similarity of neural 
representation in a brain area with the geometry of the 
sensory or category domain represented (which we call 
domain selectivity; motion vs color vs motion categories 
vs color categories).  2) The similarity of neural 
computation performed by a brain area with predictions 
from 2 deep RNNs: one trained to distinguish categories 
(like the behavioural task) and the other to process 
visual information (this we call, computation selectivity). 
The assumption here was that to perform the 
behavioural task both kinds of computations should 
take place in different brain areas, i.e. categorization 
required also sensory processing. 

The two approaches we used are distinct. Being 
selective to a sensory domain  (domain selectivity) is 
not the same as performing computations like sensory 
processing and abstract categorization (computation 
selectivity). Domain selectivity refers to representation 
content only, while computation selectivity 
characterizes how these representations are 
manipulated and compared to each other to find their  
similarities and differences.  Also, sensory processing 
requires integrating sensory inputs while abstract 
categorization requires combining these integrated 
inputs with prior knowledge about learned categories. 
All these computations take time. Thus, understanding 
which computations each area performs requires 
analyzing temporal information in brain dynamics. 
Although distinct, domain and computation selectivity 
should give similar results. We found this below.  

Domain Selectivity 

We first considered the selectivity of each brain area to 
motion direction and color (Fig. 1B).  To understand 
what kind of representations (motion direction vs color, 
sensory processing vs  categorization) were encoded in 
each brain area, we computed the dissimilarity between 

brain Representation Dissimilarity Matrices (RDMs) and 
sensory/category DMs (SDMs/CDMs) on the other. 
Brain RDMs were obtained using LFP recordings from 
each brain area. We followed (Kriegeskorte et al., 2008) 
and used the dissimilarity between dissimilarity 
matrices (called deviation) as metric to compare brain 
RDMs and SDMs/CDMs. These deviations are shown 
in panels of Figure 2. There are 6 panels (for the 6 brain 
areas). Each panel has 4 bars (deviation of each brain 
RDM from color SDM; motion SDM; color CDM; motion 
CDM).  

  Interestingly, for most brain areas domain selectivity 
depended not only on the stimulus but also on the 
domain of categorization.  It switched between the two 
domains depending on task (motion direction or color 
categorization). This is a surprising result, not 
previously shown to the best of our knowledge. Also, 
related work in the literature usually focuses on sensory 
perception only, and does not normally involve flexible 
switching between sensory domains, contrary to the 
paradigm considered here.  
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Figure 2: Deviations between RDMs and 
SDMs/CDMs. (A) Motion categorization task. Each 
panel depicts deviations between RDM of a brain area 
and the SDM (“color”, “motion” 1st and 2nd bars from 
left) or CDM  (“color category”, ”motion category”, 3rd 
and 4th bars) respectively. Error bars denote standard 
errors. All deviations were significant at the p<0.0001 
level with the exception of those with “n.s” at the 
bottom(not significant; fixed-effects category-index 
randomization test, see Methods and (Kriegeskorte et 
al. 2008)). (B) Same results for the color categorization 
task. Note that deviation is based on correlation 
distance, thus smaller bars indicate better similarity 
between RDMs and SDMs/CDMs. Asterisks above 
each bar denote the significance level of the 
corresponding partial correlations. See (Pinotsis et 
al.,2019 for more details). 

   V4 showed preference towards the color domain in 
both tasks and motion categories in the motion task. MT 
was more selective for the motion category domain  in 
both tasks. FEF exhibited selectivity for motion in the 
motion task and color in the color task. PFC selectivity 
was for the motion domain in the motion task and the 
color domain in the color task. Finally, IT seemed to 
prefer more color in both tasks and color categories in 
the color task. See (Pinotsis et al., 2019) for more 
details.1  We then confirmed the above results using 
deep neural networks. We turned to computation 
selectivity. This was defined based on the similarity of 
brain activity with predictions from RNNs performing 
either sensory processing or categorization.   

Computation Selectivity 

To understand this, we built deep RNNs. Although they 
comprised six LSTM layers (the same number of layers 
as the cortical network from which we recorded LFP 
responses), we use them only for simulating brain 
computation, not as precise descriptions of anatomy. 
We considered 2 variants of the same RNN. One 
trained to perform sensory processing and the other 
abstract categorization (sensory and category RNN 
respectively). We assumed that sensory processing 
would be based on low level visual features, while 
categorization would be based on information that the 
animal had learned after being trained to perform the 
task. Then we compared the RNN predictions to neural 
activity. We concluded that the computation a brain 
area performed would be similar to that of the RNN 
whose predictions were more similar to (had smallest 
deviations) and significantly correlated with brain 
activity. We trained them using LFPs as inputs and 
labels corresponding to different sensory stimuli or 

                                                           

1 Due to space limitations, we did not include further details here.  

 

categories as outputs (depending on whether the RNN 
was processing sensory information or categorizing). 
We used RSA again and compared brain and network 
RDMs. Results are presented in Figures 3 and 4. 

Figure 3: This figure follows the format of Figure 2. 
Bars in each panel depict deviations between RDM of a 
brain area and each layer in a deep RNN performing 
motion processing and categorization. There are six 
pairs of bars, equal to the number of layers. The left bar 
in each pair corresponds to deep RNN predictions when 
the network performs sensory processing, while the 
right bar corresponds to predictions during 
categorization. Error bars denote standard errors. All 
deviations were significant at the p<0.0001 level with 
the exception of those with “n.s” at the bottom 
(Kriegeskorte et al. 2008)). Asterisks above each bar 
denote the significance level of the corresponding 
partial correlations. 
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Figure 4: Deviations between brain and network 
RDMs for color processing and categorization. This is 
similar to Figure 3 where the deep RNN has learned to 
process  and categorize color as opposed to motion 
direction stimuli.  

The results of Figures 3 and 4 confirmed those of 
Figure 2: V4 showed preference towards sensory 
processing in the color task and motion categorization 
in the motion task. MT was more selective for 
categorization during both the motion and color tasks. 
FEF showed clear preference for sensory processing 
during both tasks. PFC seemed to prefer more sensory 
processing in motion task and categorization in the 
color task. Finally, IT seemed to prefer sensory 
processing in both tasks which also coincided with its 
domain selectivity. See (Pinotsis et al., 2019) for more 
details. 

 

Conclusions 

Our results fit well with earlier results by (Mante et al., 
2013). We found that  sensory information reaches 
PFC. Gating of sensory input is absent and filtering out 
of irrelevant (sensory) information by earlier brain areas 
did not occur.  Also, (Mante et al., 2013) found that PFC 
responses during the motion and colour tasks occupy 
different parts of state space, and the corresponding 
trajectories are well separated along the axis of context 
(task). This can explain the flexible domain selectivity 
switching between tasks we found here.  

  All in all, we found that representations changed 
flexibly depending on context (motion vs color task) and 
level of abstraction (sensory processing vs 
categorization). The motion task seemed to rely more 
on categorization, while the color task seemed to be 
driven by sensory computations. These results are in 
accord with earlier findings by (Brincatt et al., 2018).  In 
that paper, coding in most areas was found to reflect a 
mixture of sensory and categorical effects. Similarly, we 
found significant similarities between brain RDMs and 
RDMs from neural networks that perform both sensory 
processing and abstract categorization. In the same 
work, categories arose gradually across the hierarchy. 
Our analysis, based on deep recurrent neural networks, 
revealed that gradual emergence is driven by sensory 
color and more abstract motion direction categorization. 

  All in all, our analysis sheds light to the biological basis 
of categorization and differences in selectivity and 
computations among different brain areas. It paves the 
way for constructing neural networks that can replicate 
brain dynamics underlying complex sensorimotor 
decision making tasks. Elucidating such differences can 
be important for building automated systems for 
intelligent decision making in multidimensional 
domains, like driverless cars, pilot support systems, 

medical diagnosis algorithms etc. We hope our work 
can help make progress in this direction. 
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