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Abstract

Recent monkey studies have revealed a face processing net-
work in the IT cortex that consists of multiple face-selective
patches and forms a putative functional hierarchy. Although a
number of computational models accounting for this have been
proposed, they have been mostly feedforward, ignoring the
reciprocal nature of the visual system. Here, we present a two-
layer deep generative model based on variational autoencoder
(VAE), which provides a Bayesian probabilistic framework with
explicit feedforward and feedback processing. While the lower
layer of our model uses a standard VAE, the upper layer uses
our recently developed algorithm called group-based VAE,
which is capable of learning invariant representations from
inputs with grouping information. After training with multi-view
face images, the upper layer encoded view-invariant facial iden-
tities while the lower layer showed facial feature tuning, both in
a way quantitatively similar to the observations in patches AM
and ML, respectively, as shown in Freiwald and Tsao (2010)
and Freiwald et al. (2009). Taken together, we have found a
novel deep generative model that might have some computa-
tional relevance with the monkey face processing system.
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Introduction

Recent experimental studies have revealed a face-processing
network in the monkey IT cortex that consists of multiple face-
selective patches (Moeller, Freiwald, & Tsao, 2008). Those
patches have specific tuning properties, forming a functional
hierarchy with progressively increase of both facial identity
selectivity and view invariance from the posterior to the ante-
rior patches (Freiwald & Tsao, 2010). Although a number of
computational studies have been conducted to explain these
findings, their models have been mostly feedforward, thus
precluding any further speculation of possible roles of the re-
ciprocal visual processing (Einhauser, Hipp, Eggert, Kérner,
& Konig, 2005; Farzmahdi, Rajaei, Ghodrati, Ebrahimpour, &
Khaligh-Razavi, 2016; Leibo, Liao, Anselmi, Freiwald, & Poggio,
2017). Thus, this poses the question: is there a hierarchical
generative model that can account for the properties of the
face-processing system?

In this study, we take a first step to address this question and
propose a two-layer deep generative model that targets at face-
processing patches AM and ML. In this model, we use learning
algorithms based on variational autoencoder (VAE) (Kingma &
Welling, 2014). VAE generally provides a Bayesian probabilistic
framework, along the lines of previous theoretical approaches
for visual modeling (Olshausen & Field, 1997; Hyvérinen, Hurri,
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& Hoyer, 2009; Hosoya & Hyvarinen, 2017; Hosoya, 2012),
but formalizes explicit feedforward and feedback processing in
inference and learning. In our model, the lower layer uses a
standard variational autoencoder (VAE), while the upper layer
uses our recently developed algorithm called group-based vari-
ational autoencoder (GVAE) (Hosoya, 2019), an extension of
VAE capable of learning invariant representations. In GVAE,
the model assumes that training images of the same identity
are grouped together (inspired by the classical temporal coher-
ence principle (Foldiak, 1991)) and thereby separately learns
the identity representation as the factor common within a group
and the view representation as the factor specific to each im-
age. We have trained the model with multi-view face images
with grouping information and tested it by simulating two past
monkey experiments (Freiwald & Tsao, 2010; Freiwald, Tsao,
& Livingstone, 2009). As a result, we found that the model
showed view-invariant coding of facial identities in the upper
layer and more specific facial feature tuning in the lower layer,
in a way similar to the monkey face-processing patches AM and
ML, respectively, as shown in the physiological experiments.

Two other prior studies have taken a generative approach but
different from our work here. In (Yildirim, Kulkarni, & Freiwald,
2015), the generative part of their model is a fixed inverse-
graphics algorithm that can generate a face image from given
parameters of view (pose/light) and identity (shape/texture),
whereas the forward part is a convolutional network trained to
infer those parameters from an image input (and compared
to physiology); thus, view invariance is hard-coded in their
model. In (Hosoya & Hyvarinen, 2017), a mixture of sparse
coding models is introduced to account for selectivity and tun-
ing properties of ML, but does not explain view invariance in
AM.

Model

Our model consists of two-layers with the architecture depicted
in Figure 1A. In the lower layer (layer-1), we have one latent
variable x and a forward network e to infer x as well as a gener-
ative network d to infer back the input ¢; we use convolutional
and deconvolutional neural networks for e an d, respectively. In
the upper layer (layer-Il), we have two latent variables y (view)
and z (identity) and forward networks g and & each to infer y
and z as well as a generative network f to infer back x; all
networks are fully-connected.

Formally, layer-l is a (standard) VAE model. That is, we
assume the following probabilistic generative model:

p(x) = N(0,1)
pt) = N(d(x),6°])

(1)
)
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Figure 1: (A) Architecture of our two-layer model. In layer-I, the forward network e infers the intermediate variable x from the input ¢, while the
generative network d infers back the input. In layer-Il, the forward networks g and & each infer the view variable y and the identity variable
z, while the generative network f infers back the intermediate variable x. (B) Algorithmic outline of GVAE. Given a group of inputs x, the
corresponding individual views y; are computed by g and the common identity z is computed by the average of 4. Then, each reconstructed
input £y is computed by f from the combination of y; and z. The learning of the network weights is based on the variational autoencoder scheme

(see text).

This defines the generative process that first draws x from the
standard Gaussian prior and then draws ¢ from the Gaussian
distribution whose mean is given by the generative network d
applied to x. For inference of the posterior distribution of x for
a given input ¢, we assume the following inference model:

q(xl) = N (e(t),€" (1))

which is the Gaussian distribution whose mean is given by the
forward network e applied to  and whose variance is given by
an additional neural network ¢”.! The weights of all the neural
networks are parameters of the model and are determined by
a learning algorithm based on variational Bayes. The algorithm
is essentially to minimize the reconstruction error of the au-
toencoding loop with a certain regularization constraint. See
(Kingma & Welling, 2014) for more details of VAE.

For layer-I, a naive application of VAE would not work since
there would be no clue on which latent dimension corresponds
to view or identity. Thus, we instead use GVAE, an extension
of VAE taking inputs with grouping information. In this, we
assume that inputs of the same identity are grouped together.
From such groups of inputs, we learn to extract the identity
code as the factor common within each group and the view
code as the factor differentiating each group member. Formally,
each input group has K members, (xi,...,xk), with x; indexed
by the member number k. We assume independence between
groups but not members within a group. For an input group,
we consider the following probabilistic generative model with
the (member-specific) view variables yy, ..., yx and the (group-

@)

'Since we consider only Gaussians with diagonal covariances, we
specify a vector of variances in the second parameter to Gaussian
distribution as convention.
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common) identity variable z:

p(z) = N(0,1) (4)
p(y) = AN(0,1) (5)
pOxlye.2) = N(f (. 2), 1) (6)

fork=1,...,K. For inference of posteriors, we again assume
the following inference models:

q(klx) = N (g(xk), 8" (xx))

A 1 & N 1 & "
X1, ..., xk) = - X)), = V(x 8
q(z|xi x) (KI;I (%) Kk; (k)) (8)

(¢” and k¥ are additional neural networks to infer the vari-
ances of y; and z, respectively.) Here, the inference of z
is slightly more complicated since we need to estimate the
group-common identity code. Our approach here is to first
compute the individual identity codes and then take the aver-
age. Again, the weights in the neural networks are determined
by a variational Bayes learning algorithm similarly to the VAE
method. Figure 1B illustrates the algorithmic outline of GVAE;
see (Hosoya, 2019) for more details of GVAE.

We have constructed a concrete two-layer model with 100
units for intermediate variable x, 3 units for view variable y, and
100 units for identity variable z (with 6 = p = 0.1). For training,
we used a dataset of synthetic face images generated from
a 3D morphable head model (Dai, Pears, Smith, & Duncan,
2017). In this, each image had an identity with random 100
shape and 100 texture dimensions and had a view of random
horizontal (from —90° to +90°) and vertical angles (from —30°
to +30°). We first trained layer-l by the VAE method with
this dataset. To train layer-1l, we randomly grouped 5 face

(7)
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Figure 2: (A) Response similarity matrices for layer-1 and layer-ll. Each shows the correlation coefficients between the population responses for
each pair of images, where the images of the same view are grouped together. (B) Para-diagonal correlations. Each bar shows the mean (with
s.d.) of the correlations between the images of the same identity with different views (only horizontal views). View difference ranges from nearest
views (1) to farest views (4). Blue: layer-I, red: layer-Il. «: statistical significance (t-test; p < 0.01). (C-E) Comparison of layer-I and monkey ML
area in terms of the experiment using cartoon face images (Freiwald et al., 2009). Shown are (C) the number of tuned units for each feature, (D)
distribution of the number of tuned features per unit, and (E) distributions of peak (top) and trough (bottom) feature values. Blue: layer-I, red:

monkey ML.

images having the same identity but possibly with different
views; we fed groups of such images to layer-l and trained
layer-Il on the outputs of layer-1. We do not specify here the
precise architecture of each forward or generative network, but
the details of the architecture generally do not affect much the
result.

In the sequel, when testing our trained model with a new
input ¢, we refer to the value of x = e(¢) as the response of
layer-I and to the value of z = h(x) as the response of layer-
Il (the identity variable). However, to compare with actual
neural responses, we apply the soft half-wave rectifier ¢(a) =
log(1+ e“) to each unit response to ensure non-negativity.

Results

We have investigated the property of our trained two-layer
model with respect to two physiological findings on the
macaque face processing system (Freiwald & Tsao, 2010;
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Freiwald et al., 2009). We compared layer-| with area ML and
layer-Il with area AM.

To simulate the experiment in (Freiwald & Tsao, 2010), we
presented, to our model, a set of test face images consisting
of 25 identities and 7 views (eliding the back view) that were
generated from the aforementioned 3D head model, but sepa-
rately from the training set (thus, the identities are new). Then,
we calculated the correlation between the population activities
for each pair of test images at layer-1 or Il. Figure 2A shows the
correlation matrix for each layer, where the image numbers are
grouped according to the view. We can see a block-diagonal
structure as the most prevalent feature in layer-I, indicating
view-specificity. In layer-II, on the other hand, such block diago-
nal disappears while a para-diagonal structure becomes much
more prominent, showing identity-selectivity. These results are
similar to areas ML and AM, respectively, as shown in Fig. 4D
and F of (Freiwald & Tsao, 2010). Although layer-I also shows



para-diagonal lines, the magnitudes are relatively weak in par-
ticular for the correlations between distant views (Figure 2B).
Although the experimental study also showed mirror-symmetric
view tuning in area AL (Freiwald & Tsao, 2010), we could not
find such property in any layer of our network including inter-
mediate layers of the forward or generative networks.

We have also simulated the experiment in (Freiwald et al.,
2009) using cartoon face images that are composed of 19
feature parameters (all ranging between —5 and +5). We
measured responses of each unit at layer-1 while presenting
randomly chosen cartoon face images. Following the analy-
sis method described in (Freiwald et al., 2009), we estimated,
for each unit, a tuning curve for each feature parameter and
determined its statistical significance using their criterion. Fig-
ures 2C and D show the number of units tuned to each feature
parameter and the distribution of the number of tuned features
per unit, respectively. The results from the model (blue) and
from the macaque ML area (red) are generally similar: most
units represent a small number of geometrically large features.
The discrepancy in the iris size representation is, however, eas-
ily noticeable. Figure 2E shows the distributions of the peak
(top) or trough (bottom) parameter values. In both the model
and the experiment, the tuning curves are maximum or mini-
mum for the extreme feature parameter. Thus, layer-I exhibited
tuning properties quite similar to area ML in terms of this ex-
periment. We also tested layer-1l with the same experiment,
but did not observe such tuning.

Conclusion

We have presented a novel deep generative model that ex-
plains some major properties of face-processing areas ML and
AM in the monkey IT. Unlike most prior studies, our model here
is based on a Bayesian probabilistic framework with explicit
feedforward and feedback computations, which would lead to
future investigation of the multi-node reciprocal processing in
the face processing network.

Our model lacks a layer corresponding to area AL, even in
any intermediate layer of neural networks. In (Freiwald & Tsao,
2010), they raised two possibilities for how the view invariance
might emerge in AM, either gradually from ML through AL, or
directly from ML. In one sense, our model favors the second
possibility, although the role of AL then remains unclear.
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