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Abstract
Understanding how expectations bias perceptual deci-
sions constitutes an unavoidable step towards decipher-
ing how we make decisions. Here, we trained Recurrent
Neural Networks (RNNs) in a novel two-alternative forced-
choice (2AFC) task where both the current sensory ev-
idence and the recent trial history provide information
about the identity of the correct choice. We found that
RNNs learned both to integrate the stimuli and to capital-
ize on the serial correlations of the trial sequence by de-
veloping history biases. Interestingly, during early stages
of training, all networks reset their biases after an error
response, which is consistent with data from rats per-
forming the same task. At later stages of the training,
approximately half of the networks moved from this ini-
tial, sub-optimal, strategy and developed after-error bi-
ases. A more detailed characterization of these different
behaviors revealed that the percentage of networks show-
ing after-error reset could be increased by limiting the re-
sources of the networks, such as reducing their size, the
information they receive or the training time. Together,
these results suggest that rats develop a sub-optimal but
easier to reach strategy to solve the task due to some lim-
iting factor such as lack of computational capacity or time
constraints.
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tual decision making

Introduction
The role of expectation biasing perceptual decisions has been
extensively studied in human psychophysics in the context
of two-alternative forced-choice (2AFC) tasks (Summerfield &
De Lange, 2014). However, despite multiple psychophysical
studies and considerable theoretical work (Ratcliff & McKoon,
2008), the way the brain flexibly combines past trial history
with incoming stimuli to make statistically informed decisions
is still not fully understood.

Here we trained Recurrent Neural Networks (RNNs) on a
2AFC task that requires the categorization of stimuli that are
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Figure 1: Rats develop after-correct transition biases. Psy-
chometric curves show the probability that rats repeat the pre-
vious choice as a function of the evidence of that choice, after-
correct (left) and after-error (right) trials (Hermoso-Mendizabal
et al., 2019).

presented in a sequence exhibiting serial correlations. In par-
ticular, the probability, Prep, that the correct answer at trial t is
the same as at trial t − 1 alternates between Prep = 0.8 (re-
peating block) and Prep = 0.2 (alternating block), every 200
trials (Hermoso-Mendizabal et al., 2019):

left trialsright trials

Repeating block (P =0.8)rep
Alternating block (P =0.2)rep

This setup allowed us to investigate how RNNs can inte-
grate decision-relevant information present at different tem-
poral scales: a fast source of information, the current stimu-
lus, and a much slower one, the trial-to-trial correlations, that
can be interpreted as the context in which the current trial
is perceived. We found that RNNs developed a trial-history
bias (transition bias, b, see Methods): a tendency to repeat
(b > 0) or to alternate (b < 0) the previous choice depending
on the number of previous repetitions vs. alternations. We
further characterized this transition bias by separating trials
depending on the outcome of the last trial (b+ and b− for after-
correct/-error biases, respectively) and found that trained net-
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Figure 2: Performance and transition bias of RNNs trained on the 2AFC task. (a) Performance of 100 randomly selected networks
across training (gray lines), compared to that of a perfect integrator that only uses the current stimulus to choose between the
two sides (yellow line). (b) and (c) After-correct/error transition biases across training, for Repeating (blue) and Alternating (red)
contexts (see main text). Thick lines correspond to the median values.

works follow two different strategies to solve the task: one in
which the transition bias is present after correct responses but
vanishes after error trials (b+� b−≈ 0), as has been found in
rats (Fig. 1) (Hermoso-Mendizabal et al., 2019); and another
strategy in which networks show a transition bias after correct
and after error of comparable magnitude but with an opposite
sign (b+ ≈ −b−). Interestingly, the former strategy charac-
terizes the behavior of all networks during the first stages of
training and only at a later stage, a sub-population of networks
are able to move to the second strategy, which has a positive
impact in their performance. We further characterized these
two types of solutions found by the RNNs by varying the size
of the networks and the amount of information they receive.

RNNs develop history transition biases

We trained 217 16-unit networks in the 2AFC task described
above (see also Methods). Fig. 2a shows the performance of
100 randomly selected networks across training. For compar-
ison, the performance of an ideal observer that perfectly inte-
grates the current stimulus information but it is blind to trial his-
tory is also shown. The performance of most networks goes
beyond that of the ideal observer, which indicates that RNNs
are able to leverage the context information.

To investigate the extent to which RNNs are using the in-
formation provided by the recent trial history, we computed
their transition biases separately for Repeating and Alternat-
ing contexts. We conditioned on the trials preceded by two
correct transitions, i.e. two correct repetitions or two correct al-
ternations, to make sure the network had experience the cor-
responding statistics of each context (e.g. that should display
a tendency to repeat in the Repeating context). Then, within
each context, we separated trials following a correct response
(+) from error trials (-) (see legends in Fig. 2b and c). The rea-
son to separate after-correct/-error trials was to test the extend

to which the RNN had developed a flexible adaptive strategy
in each context. An ideal agent behaving on e.g. a repeating
context, should be biased to repeat its previous choice after
correct responses and to alternate it after errors. Thus, to
avoid that after-correct/-error transition biases cancelled each
other we separated trials depending on the previous outcome.

We found that on average, all history biases increased with
training (Fig. 2b, c, thick lines). However, this increase was not
symmetric between after-correct and after-error conditions:
b− grew at a slower pace (Fig. 2c). Interestingly, this slow
learning was mainly due to some of the networks never learn-
ing to reverse their biases after an error trial, thus presenting
a form of after-error resetting reminiscent of what has been
found in rats performing the same 2AFC task (Fig. 1, right
panel) (Hermoso-Mendizabal et al., 2019). This after-error
bias resetting was present for all networks during early stages
of training, and it was only after this initial period that some of
the networks developed the capacity to reverse their bias after
making a mistake (Fig. 3c). This could indicate that after-error
resetting constitutes a solution that, although sub-optimal, is
easier to reach and corresponds to a local minimum in which
some networks remain throughout the entire traning.

To investigate how the two strategies explained above
emerge, we separated the networks in three different sub-
groups, depending on their transition bias at the end of the
training (see Fig. 3c, inset): Reset networks were those
that presented only after-correct biases (|b+| > 0.5 and
|b−|< 0.5) (orange points) (see Fig. 3a); Reverse networks
showed both after-correct and after-error biases (|b+| > 0.5
and |b−| > 0.5) (green points) (see Fig. 3b); Null Networks,
showed almost no bias (|b+| < 0.5 and |b−| < 0.5) (gray
points). We found that the percentage of Reset and Reverse
networks was very similar and much higher than that of the
Null networks (Fig. 3c, inset).
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Figure 3: RNNs developed different types of strategies. (a) and (b): Psychophysic curves examples for a Reset (top) and a
Reverse (bottom) network. Legend is shown between the two panels. (c) Evolution of the after-correct VS after-error transition
biases during training (thick lines correspond to the median values). Histograms show the distribution of after-error (top) -correct
(right) history biases. Inset shows the same data colored by network type (gray: Null; orange: Reset, green: Reverse) and the
percentage of each type (bars).

History bias are smaller for limited networks

Does the magnitude of the different history biases depend
on the capacity of the network? To answer this question we
trained RNNs of different sizes on the 2AFC task. We found
that transition biases and the percentage of Reverse networks
grew with the size of the network (Fig. 4a), indicating that ca-
pacity was an important factor curtailing the ability of the net-
works to develop after-error biases.

We then investigated how the extra information passed to
the networks (previous action and reward, see Methods) in-
fluenced our results. Receiving information about the pre-
vious reward was essential for the networks to develop his-
tory biases (Fig. 4b), and the percentage of Reverse networks
greatly increased when this information was provided. Taken
together, these results seem to indicate that the Reset strat-
egy is the preferred solution when a network has limited re-
sources, be it short training time, lack of capacity of the net-
work or limited information about the environment.

Methods
All networks were gated Recurrent Neural Networks
(RNNs) (Song, Yang, & Wang, 2017) and were trained using
standard supervised learning techniques. Trials were com-
posed of 4 steps (1 x fixation + 2 x stimulus + 1 x decision).
At each step, networks received as input the fixation cue, a
stimulus, which was formed by two fluctuating streams drawn
from two Gaussian distributions with different means, and the
reward and action from the previous step (Wang et al., 2018).
The network had to choose between 3 actions: fixate, respond
left or respond right. At the decision step, the network should
choose the action (left/right) associated with the stimulus with
larger mean. Transition biases were obtained from the fitting
of a 2-parameter probit function to the proportion of repeating
choices as a function of the repeating stimulus evidence, x,
defined as the stimulus evidence multiplied by the sign of the
previous response (Hermoso-Mendizabal et al., 2019):

f (x) = 1/2(1+ er f (
β∗ x+b√

2
))
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Figure 4: Performance, percentage of network types and transition biases as a function of: (a) The network size (number of
units); (b) The amount of extra information provided to the networks. Top: bars show the percentage of Null, Reset and Reverse
networks (gray, orange and green, respectively). Black line shows the average performance of all networks for the different
configurations (errorbars indicate standard error). Bottom: Transition biases for the different configurations. Each trained
network contributes 4 points: repeating/alternating context + correct/error (see methods).

Where β is the stimulus sensitivity of the network and b
represents the transition bias of the network, i.e. the prior
expectation towards repeat (b > 0) or alternate (b < 0).
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