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Abstract

In research on human language comprehension, the N400

component of the event-related brain potential (ERP) has

attracted attention as an electrophysiological indicator of

meaning processing in the brain. However, despite much

research, the specific functional basis of the N400 re-

mains widely debated. Recent neural network modeling

work suggests that N400 amplitudes can be simulated

as the stimulus-induced change in internally represented

probabilities of aspects of meaning (Rabovsky, Hansen,

& McClelland, 2018). Here, we assess this idea based on

single-trial N400 amplitudes measured in an oddball-like

roving paradigm with written words from different seman-

tic categories varying in semantic feature overlap. We

model the N400 as Semantic Surprise, the change in the

probability distribution of a stimulus’s semantic features

for each trial. Simple condition-based analyses produced

a significant effect of category switch on N400 amplitude,

and the trial-by-trial modeling similarly revealed negative

effects of Semantic Surprise on N400 amplitude. From fit-

ting a forgetting parameter for each participant, we also

gleaned insights into the rates of forgetting of past input

to the semantic system. Thus, we provide a computa-

tionally explicit account of N400 amplitudes, which links

the N400 and thus the neurocognitive processes involved

in human language comprehension to the Bayesian brain

hypothesis.
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Introduction

Since its discovery in 1980, the N400 has received much at-

tention due to its promise to uncover the brain basis of mean-

ing processing. The first studies showed that verbal stimuli

that were semantically incongruous or less expected in the

preceding context reliably produced increased centro-parietal

ERP negativities around 400ms after stimulus onset, which

were insensitive to grammatical or visual violations of expec-

tation. Subsequent experiments found that N400s are modu-

lated not only by sentence context but also by a large variety

of other lexical and semantic variables including the lexical

frequency of single words, word repetition, and the semantic

relatedness between word pairs, to name just a few exam-

ples. Overall, more than a thousand empirical studies have

used the N400 as a dependent variable, but despite these

large amounts of data, the specific functional basis of N400s

is still unclear, as reviewed by Kutas and Federmeier (2011).

To address this issue and systematically investigate the func-

tional basis of the N400, in recent years there has been a

growing interest in linking the N400 to explicit computational

models. Most relevant for the current purpose, Rabovsky and

McRae (2014) simulated typical word level N400 effects us-

ing a neural network model of word meaning and found that

the semantic feature layer’s error was consistently affected

by a variety of experimental manipulations in the same way

that N400 is. Because the network error in neural network

models is often conceptualized as an implicit prediction er-

ror, these simulations were taken to suggest that N400 ampli-

tudes reflect an implicit semantic prediction error or Bayesian

surprise at the level of meaning (Rabovsky & McRae, 2014).

Rabovsky et al. (2018) extended this approach to sentence

meaning using a neural network model of sentence compre-

hension, the Sentence Gestalt model (St. John & McClelland,

1990). They found that the change each incoming word pro-

duced in the activation state of the model’s hidden Sentence

Gestalt layer, corresponding to the model’s implicit prediction

of all the semantic features involved in the event described

by the sentence, patterned with the N400 in 16 distinct ex-

perimental paradigms. This activation change can be formally

related to a change in probability distributions produced by a

new piece of sequential input, i.e. the concept of Bayesian

Surprise (Itti & Baldi, 2009), for different features/aspects of

the meaning representation (Delaney-Busch, Morgan, Lau, &

Kuperberg, 2017). We describe these distributions in more

detail in the Methods section. In the current work, we explicitly

model single trial N400 amplitudes as the sum of the Bayesian

Surprise produced by different semantic features of German

words in an oddball-like roving paradigm with words from dif-

ferent semantic categories (e.g., birds, land animals, kitchen

utensils, etc.). We refer to this measure as ”Semantic Sur-

prise”. The more semantic features a target stimulus shares

with the preceding context, the smaller the Semantic Surprise

should be. Modeling the N400 as Bayesian surprise at the

level of meaning sets it in relation to other earlier ERP effects

in oddball paradigms in other domains such as perceptual

(i.e. auditory, visual, and tactile) mismatch negativities, which

have featured prominently as indicators of Bayesian surprise

in Bayesian accounts of brain function and predictive coding

theories (Garrido, Kilner, Stephan, & Friston, 2009; Ostwald

et al., 2012). From this perspective, the same fundamental

mechanisms of brain function apply to processes across lev-

els of representation and domain, in line with the Bayesian

brain hypothesis.

Methods

Paradigm

We employed the ”roving” paradigm developed by Baldeweg,

Klugman, Gruzelier, and Hirsch (2004) and later used by
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Ostwald et al. (2012) for modeling somatosensory mismatch

negativities as Bayesian surprise. In this oddball-like stimu-

lation protocol, rather than occasionally interrupting a train of

”standard” stimuli with a single ”deviant” stimulus, two cate-

gories of stimuli can each take on the role of standard and

deviant simply by switching categories after every 4-8 trials.

We modified this protocol to accommodate ten different stim-

ulus categories. By presenting 100 different stimulus words

(German nouns) from ten semantic categories in an ongo-

ing sequence (3000 trials) made up of short sequences from

each category, it became possible to model trial-by-trial ampli-

tudes, but also to perform more simple condition-based anal-

yses. Our categories were the following: tree species, veg-

etable species, land animals, birds, geographical formations,

pieces of furniture, means of transport, tools, kitchen utensils,

and items of clothing.

Semantic features

As features, we decided to use the hypernyms (umbrella

terms) stored in the GermaNet lexical-semantic net (Hamp &

Feldweg, 1997) for each of our stimulus words. Because of

the hierarchical structure of the word net, this ensured varying

degrees of feature overlap between words depending on their

semantic similarity. Features were excluded if they occurred

for only one stimulus word or if they had an absolute type fre-

quency below 30 in the dlexDB corpus (Heister et al., 2011)

and could therefore be assumed to be little-known. A word-

feature table was then created with the words as rows and the

hypernyms/features as columns and filled with values of 0 or

1 depending on whether a hypernym belonged to a word or

not, as a basis for later trial-by-trial Bayesian Updating.

Participants and Procedure

40 right-handed German native speakers (8 of them men) be-

tween the ages of 19 and 34 participated. In order to give

participants a task that would interfere as little as possible

with their semantic representations but ensure they would ac-

tually process the stimuli, 200 non-words were interspersed

between the stimulus words, and participants were instructed

to push a certain key whenever they read a non-word. Inter-

stimulus intervals were jittered around 800ms.

Analyses

Our dependent variable was the mean amplitude 300 to

500ms after stimulus onset, averaged across the electrode

channels in an anterior region of interest (including the five

middle electrodes of the F, FC and C rows, respectively).

Condition-based analysis Semantic categories are natu-

rally characterized by high within-category and low between-

category measures of overlap on semantic features. The last

word in a sequence of words from the same category (a stan-

dard) is therefore expected to produce a significantly weaker

N400 than a word immediately following a sequence of words

from a different category (a deviant). Our conditions of inter-

est were the standard (the last stimulus in each sequence of

words from the same category, 475 trials per participant be-

fore artefact rejection), and the deviant (the first stimulus in a

new sequence of words from the same category, also 475 tri-

als per participant). We averaged N400 ROI mean amplitudes

by participant and condition in order to test for differences be-

tween the conditions via a paired-samples t test.

Trial-by-trial Bayesian modeling On a trial-by-trial basis,

we expect N400 amplitude to be influenced by the respective

trial’s Semantic Surprise, based on the current and preceding

words’ semantic features. Our Semantic Surprise measure is

essentially the sum of the Bayesian Surprise elicited by all se-

mantic features. For each semantic feature, we implemented

a Bayesian sequential updating scheme which uses past oc-

currences and non-occurrences of the respective feature to

compute a beta probability distribution for that feature’s occur-

rence probability µ ∈ [0,1] on the next trial. The occurrence or

non-occurrence of each semantic feature i= 1, ...,k at a given

trial is modeled as the outcome of an independent Bernoulli

process based on the parameter µi. On each trial t = 1, ...,u,

the stimulus word carries a subset of these k semantic fea-

tures, corresponding to a trial-feature matrix Y ∈ Bu×k with

B ∈ {0,1}, i. e. containing zeros and ones to mark the pres-

ence or absence of the different features. To model the greater

importance of more recent semantic input compared to input

further in the past, we conceive the system underlying the

N400 as one that down-weights past trials with an exponen-

tial forgetting mechanism determined by a parameter τ ≥ 0

(Ostwald et al., 2012). Intuitively, the lower τ, the steeper the

down-weighting and thus the higher the rate of forgetting past

input. The α and β parameters of a beta probability distribu-

tion can be conceived as counters of past successes and fail-

ures in a Bernoulli process (occurrences and non-occurrences

of features). To reflect our assumption of a uniform prior, our

initial value for α and β before the first trial is 1. Thus, at a

given trial t and for a given semantic feature i, αti equals the

sum of the vector of the feature’s occurrences and βti equals

the sum of the vector of the feature’s non-occurrences, each

supplemented by an initial 1. Our forgetting mechanism can

be implemented by multiplying each vector element-wise with

a weighting vector d before computing the sum. The weighting

vector d is obtained by computing the down-weighting function

of all integers from 1 through u+ 1, with the down-weighting

function being

f (x) = exp

(

−
1

τ
(u+1− x)

)

(1)

This ensures that the highest weight is always 1. At each

trial t, the past feature occurrences and initial 1 are multiplied

element-wise with the last t + 1 elements of d, such that the

current trial always has a weight of 1:

αti = du+1−t +
t

∑
s=1

ysi
·du+1−t+s (2)

βti = du+1−t +
t

∑
s=1

(1− ysi
) ·du+1−t+s (3)
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The change in the beta distribution for feature i from trial t −1

to trial t, or rather the inefficiency of assuming that the distri-

bution is pit−1
(prior distribution) when it is really pit (posterior

distribution) may be computed using the Kullback-Leibler di-

vergence (Kullback & Leibler, 1951; Itti & Baldi, 2009):

BSit = KL(pt(µi|yit )||pt−1(µi|yit−1)) (4)

We defined Semantic Surprise as the sum of this divergence

across features at each trial. The Semantic Surprise for all

trials of each participant was then re-scaled by its own range

and used as a regressor for N400 amplitude in a simple linear

regression model. This was done for each participant individ-

ually to allow for variability between participants. As a conse-

quence, the parameters to be fitted to each participant’s data

were τ as well as the intercept, slope and error variance pa-

rameters of the linear regression. For a given value of τ, the

three parameters of the linear model can be analytically fitted

using maximum-likelihood estimation. However, formulating

an analytical function mapping τ onto a simple linear regres-

sion likelihood is complex. Therefore, τ was fitted iteratively

using the SciPy implementation of the Brent-Dekker method

for unimodal minimization (Jones, Oliphant, Peterson, et al.,

2001). At each iteration, a linear model using the Semantic

Surprise with the current τ value was fitted and its negative

log likelihood used as cost function for the minimization. As

the down-weighting function exceeded computational capaci-

ties for τ < 5, the lower bound for τ was set to 5. The upper

bound was set to 1000 to reflect the fact that with increasing

τ, the change in the Semantic Surprise regressor decreases

(please see Figure 1).

Figure 1: Semantic Surprise on 200 example trials for different

values of τ.

Results

Condition-based results

There was a clear N400 effect of category switch between

words. Figure 2 shows grand averages for standard and de-

viant stimuli at FCz. The mean difference of N400 amplitude in

Figure 2: Grand averages at FCz averaged over all partici-

pants for the standard and deviant conditions.

our ROI between the deviant and standard conditions across

participants was -0.53 (SD=0.61). The difference was signifi-

cant at t(39) =−5.51, p < 0.0001.

Results of Semantic Surprise Modeling

At the level of individual participants, optimal tau values

showed a bipolar distribution (see Figure 3). The slope of Se-

Figure 3: Histogram of optimal tau values by participant with

a lower bound of 5 and an upper bound of 1000.

mantic Surprise’s effect on N400 mean amplitude also showed

some variability (please see Figure 4). As the Semantic Sur-

prise regressor for each participant was re-scaled by its own

range, giving it a maximum of 1 and a minimum of 0, the slope

may be interpreted as the amount by which Semantic Surprise

at its maximum changes N400 mean amplitude compared to

its minimum, and can be compared across participants.

Discussion and Outlook

Our condition-based results confirm the basic idea that a high

overlap of semantic features from one stimulus to the next in-
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Figure 4: Regression lines for Semantic Surprise’s effect on

N400 mean amplitude by participant, with a black line repre-

senting the median slope and intercept.

creases N400 amplitudes, as semantic feature overlap is what

characterizes words within each of our ten categories. The

results of our Semantic Surprise Modeling, while showing the

variability of Semantic Surprise’s effect on the N400 across

participants, mostly produced negative effects as expected.

In addition, we found that the τ forgetting parameter varied

widely, suggesting that it may be useful to take participants’

individual rates of forgetting past semantic stimuli into account

when using priming-related paradigms to examine the N400.

The very high τ values for some participants may be inter-

preted to mean either that these participants had extremely

low rates of forgetting, or that the massive repetition of stim-

uli (30 times per word) essentially prevented forgetting of past

semantic input towards the end of an experimental session.

This should be further explored, for example by examining

the evolution of the forgetting parameter over the course of a

participant’s session. We demonstrate the feasibility of mod-

eling trial-by-trial N400 amplitudes explicitly as an aspect of

Bayesian semantic processing, in line with Rabovsky et al.

(2018). In future analyses, we will make inferences on popu-

lation parameters, and evaluate the relative model plausibility

of other agent models and cognitive null models.
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