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Abstract: 

How the human brain represents multiple models of the 
environment for decision-making (model-based 
reinforcement learning, MB-RL) is not well understood.  
We hypothesized that models are efficiently represented 
based on the similarity among them, to reduce 
redundancy, and this technique is called ‘model 
abstraction’ in the field of AI research. We designed a 
novel sequential learning task in which participants were 
required to simultaneously learn multiple models with a 
hidden latent structure, and studied corresponding brain 
activity using fMRI. By using an MVPA, we found that 
human OFC encodes the models reflecting the similarity 
among them. The degree of this ‘model abstraction’ 
ability was correlated with individual behavioral 
performance. Our results suggest that the human brains 
represent multiple models in a compact space, and this 
allows us to efficiently learn complex environments.  
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Introduction 

Humans can flexibly deal with complex environments 
by using mental models, which are often learned 
through experience. This ability comes under the 
umbrella of model-based reinforcement learning (MB-
RL), and allows decision-making based on an internal 
representation of the environment and a knowledge of 
how actions may lead to various consequences. 
Although previous studies have shown that humans use 
a MB-RL strategy in laboratory decision-making tasks, 
the tasks in these studies have relied on a single, 
explicit environmental model (Daw, Gershman, 
Seymour, Dayan, & Dolan, 2011). In the real world, 
however, the environment may permit many models, 
and somehow the human brains can represent them in 
an efficient manner, despite limited memory capacity. 
This ability is called ‘model abstraction’ in the field of 

artificial intelligence, and is an important topic in AI 
research. Recent studies showed that humans brains  
represent abstract structures of items (Tang et al., 
2019) or state representations (Schuck et al., 2016). 
Here, we hypothesized that humans also utilize such 
dimensionality reduction when representing 
environmental models for decision-making. 

To test this, we conducted a functional magnetic 
resonance imaging (fMRI) with a novel sequential 
learning task. In this task, participants performance 
relied on simultaneously learning multiple models with 
a hidden latent structure and updating them to follow 
alternations of the models. We employed a multi-voxel 
pattern analysis (MVPA) to investigate whether the 
brain activity patterns can be explained by the model’s 
latent structure. Furthermore, to confirm that the 
participants employed a model-based strategy (Doll, 
Duncan, Simon, Shohamy, & Daw, 2015), we used 
MVPA to quantitatively define the degree of mental 
simulation, which is crucial for model-based strategy, 
and showed that it is correlated with individual 
behavioural performance of model learning. 

Methods 

fMRI experiment 

21 participants performed a modified version of the 
multi-step sequential learning task (Momennejad et al., 
2017) in an fMRI scanner. Participant consent was 
obtained in accordance with a protocol reviewed and 
approved by the Ethics Committee of the Advanced 
Telecommunications Research Institute International. A 
3-T Siemens Prisma scanner with a 12-channel head 
coil was used to perform T2*-weighted echo planar 
imaging. The scanning parameters were: TR, 1000 ms; 
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TE, 30 ms; FA, 60°; FOV, 192 × 192 mm; 72 slices; and 
a 2.0-mm slice thickness without gap.  

Figure 1: Task design. a) The task consists of three phases. 
The semantic categories of stimuli in the middle and outcome 
states were used for the decoding. b) Example of the latent 
relationship. In the relearning phase, we switched model-
transition relationship for 4 models so that every transition 
pattern includes one swapped model: e.g., swapping the 
model 1 for model 5, and swapping model 3 for model 7. 

In this task, there were three phases: learning, 
relearning, and test phases. First, in the learning phase, 
participants learned two-step transitions leading to a 
monetary outcome by trial and error. At the beginning 
of each trial, a triplet of colored boxes (yellow or red) 
were presented for 4 secs (‘Cue’ in Fig. 1). After that, 
two fractal images appeared (initial state) and the 
participants were asked to choose one within 2 secs. 
Then, a face or a scene image (middle state) was 
shown for 2 secs followed by a body or an object image 
(outcome state) with or without a reward (coin image). 
All state transitions were deterministic.  

The transition rules from the initial and middle state 
were fixed through the experiment, while the transitions 
rules from the middle and the outcome state were 
defined by the pattern of triplet of boxes; here, we 
referred to this as a ‘model’. There were eight different 
models but there was a latent structure and their 
corresponding transition patterns were overlapped (Fig. 
1b). Namely, there were four ‘transition patterns’, I-IV, 
and two models belong to each transition pattern. We 
also define the model similarity in terms of the image 
categories in the outcome states and the transitions 
from the middle to the outcome states, i.e., transition 

pattern I and II are similar, while transition pattern I and 
III are dissimilar. Participants were instructed that the 
pattern of triplet of boxes defines the transition from the 
middle to the outcome state, but not the latent structure. 
Participants performed 2 sessions, and each session 
consists of 64 trials; i.e., they performed 16 trials per 
model. The model-transition relationship and the order 
of the trials were pseudo-randomized across 
participants.  

In the relearning phase, participants were asked to 
make a choice on the middle state not the initial state. 
Participants were solely exposed to the triplet of boxes 
for 4 secs, and then chose one of two images. For half 
of 8 models, the mapping between the model and 
transition pattern was switched so that every transition 
pattern will have swapped model and relearning was 
required (Fig. 1b). Participants performed 64 trials, i.e., 
8 trials for each model in this phase. 

Finally, in the test phase, participants made a choice 
on the initial state after the display of triplet of boxes for 
4secs. Unlike the learning phase, no state transition and 
reward feedback were displayed to the participants.  
The participants were asked to choose a fractal image 
which leads a rewarded outcome state, and paid based 
on the amount of rewards accumulated in all phases. 
There were 32 trials in this phase. 

fMRI decoding analysis  

We examined whether the participants employed (1) 
the latent structure of models and (2) a model-based 
strategy by using neural decoding techniques.  For both 
analyses, we extracted patterns of blood-oxygen-level-
dependent (BOLD) response during the ‘Cue’ in three 
phases separately, and applied support vector machine 
(SVM; Cortes & Vapnik, 1995) for classification (Fig. 2). 

To identify the structure of model representations in 
the brain, we defined a ‘model abstraction score’ which 
evaluates the similarity between the brain activity 
patterns of the models. For each participant, we 
conducted an SVM classification for 8 models and 
obtained the outputs, namely 8 decision values (DVs), 
for all trials. Here, DVs can be considered as a neurally-
defined similarity between different models, because 
models which have similar neural representation should 
have high DVs. We then calculated a ‘confusion matrix’ 
D (Fig. 2a) of which element is defined as:  

𝐷(𝐼, 𝐽) = Ε )**𝐷𝑉,,-
-∈/,∈0

1 
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where 𝐷𝑉,,- is the decision value for model j obtained 
from the brain data of trials with model i. Note that the 
diagonal components, 𝐷(𝐼, 𝐼), did not include the value 
of the DVs for the same model, e.g.  classifier’s output 
for model i from input data of trials with model i. We 
compare this confusion matrix and a ʻtemplate matrixʼ, 
which represents the latent structure of the models and 
has ones for the models with same transition pattern, 
otherwise zeros. We defined a ʻmodel abstraction scoreʼ 
as Pearson’s correlation coefficient between the 
confusion matrix and the template matrix. As the 
model’s latent structure, i.e., template matrices, are 
different in the learning phase and in the relearning and 
test phases, we used the original template for learning 
phase, whereas switched template for relearning and 
test phases.  

Figure 2: MVPA analysis. a) For model abstraction analysis, 
an eight-class SVM was applied to single-trial brain activity 
patterns during the Cue presentation. Outputs of the classifier 
for each model construct a confusion matrix, and the similarity 
between the confusion matrix and a template matrix is 
calculated as a model abstraction score. b) For mental 
simulation analysis, the outputs of four-class SVM with image 
semantics were used to estimate the mental simulation score. 

To investigate whether the participants used a model-
based strategy, we evaluated the degree of mental 
simulation from decoding accuracies. First, to construct 
a decoder for image semantics, we conducted an 
experiment where the participants observed 60 different 
images with each of four semantic categories (face, 
scene, body and object) used in the main experiment. 
We next constructed a 4-class SVM decoder from 
activity patterns during the Cue step. Outputs of the 
SVM, DVs, can be considered as a degree of mental 
simulation for the future state. We defined a ‘mental 
simulation score’ M as the difference of DVs between 
visited and non-visited states for each step (Fig. 2b): 

Mmiddle = DVvisited middle state – DVnon-visited middle state 

Moutcome  =   DVvisited outcome state – DVnon-visited outcome state 

Results 

Through trial and error, participants acquired the 
correct choices over the course of the task (Fig. 3).  

Figure 3: Behavioral results. a) For the learning and b) the 
relearning phases, 3-trial moving average of the behavioral 
performances are shown. c) For the test phase, percentage 
of correct responses are shown for each participant.  

Abstract model representation in OFC 

We tested how the models are represented in the 
brain. We used the orbitofrontal cortex (OFC) for the 
region of interest because previous work has suggested 
that OFC is involved in representation of environmental 
models (Schuck et al., 2016). We defined OFC by 
Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) and conducted a decoding 
analysis using all trials in each phase.  

Figure 4: Abstract model representation in OFC. a) Model 
abstraction scores were significantly correlated with the 
confusion matrices in the learning and test phases. b) The 
confusion matrix in the test phase showed that the model 
similarity is preserved in the brain activity patterns. c) 
Individual model abstraction scores are correlated with the 
behavioural performance in the learning phase. 

 
The model abstraction score was significantly positive 

both in the learning phase (Fig. 4a; P < 0.03; two-tailed 
one-sample t-test) and in the test phase (P < 0.0004; 
two-tailed one-sample t-test). Strikingly, the confusion 
matrix in the test phase, where the participants were 
required to engage mental simulation studiously, shows 
that the model similarity is structurally preserved in the 
brain (Fig. 4b). It is noteworthy that OFC has the 
greatest correlation with the template matrix, i.e., the 
highest model abstraction score, among all AAL regions.  

We next examined whether the degree of model 
abstraction was related to participant’s behavioural 
performance. Figure 4c shows that the individuals with 
higher model abstraction score achieved significantly 
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better choice accuracy in the learning phase 
(Spearman’s R = 0.74; P < 0.0014). In the relearning 
and test phases, the model abstraction scores were not 
correlated with the choice accuracies (P > 0.05 for both 
phases).  

Mental simulation leads to better performance  

Figure 5: Mental simulation analysis. a) Mmiddle for each 
phase. b) Correlation between Mmiddle and the behavioural 
performance in the learning phase. Moutcome were not 
correlated with behavioral performances (P > 0.05). 

Next, we asked whether participants employed a 
model-based strategy. We obtained reasonable 4-class 
cross-validated classification accuracies of 65.4 ± 0.03 
in occipital and fusiform regions defined by AAL (mean 
± s.t.d). To test whether mental simulation score was 
increased through the experiment, we used a simple 
linear regression model that aimed to explain the 
modulation of experimental phase in terms of mental 
simulation score. The regression slope (β) associated 
with the experimental phase was significantly positive 
(Fig. 5a; β = 0.0032; P < 0.032), suggesting that the 
participants could do mental simulation especially in the 
later phases. We further confirmed that the individuals 
with higher mental simulation score achieved 
significantly higher choice accuracy in the learning 
stage (Fig. 5b, Spearman’s R = 0.5; P < 0.022).  

Discussion 

In this study, we developed a three-phase sequential 
learning task in which participants store multiple models 
simultaneously, and investigated how human brain 
represents these models by fMRI decoding analyses.   

We found that models are represented in OFC by 
representing the latent structure underlying the models. 
The degree of model abstraction was correlated with 
individual behavioral performance. It has been 
suggested that the human brain abstracts relationships 
between items (Tang et al., 2019) or states (Schuck et 
al., 2016). and our study suggests that the human brain 
also performs abstraction in the context of model space 
for MB-RL. We also found that participants engaged in 

mental simulation, wherein the degree of simulation 
was correlated with behavioral performance.  

Our results suggest that humans efficiently store 
environmental models for decision-making using model 
abstraction. Since recent studies have found 
abnormalities in  MB-RL in patients with psychiatric 
disorders (Gillan, Kosinski, Whelan, Phelps, & Daw, 
2016), it is possible that disruption of model abstraction 
could play a contributory role in their pathogenesis. 

Acknowledgments 

This work was supported by the Japan Society for the 
Promotion of Science (16H06396, 16K21720, 
16H06395), and Versus Arthritis (21537). We thank 
Ben Seymour for proofreading the manuscript. 

References  

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. 
Machine Learning, 20(3), 273–297. 

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & 
Dolan, R. J. (2011). Model-Based Influences on 
Humans’ Choices and Striatal Prediction Errors. 
Neuron, 69(6), 1204–1215.  

Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & 
Daw, N. D. (2015). Model-based choices involve 
prospective neural activity. Nature Neuroscience, 
(March), 1–9.  

Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & 
Daw, N. D. (2016). Characterizing a psychiatric 
symptom dimension related to deficits in goal- directed 
control. ELife, 5(e11305).  

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. 
M., Daw, N. D., & Gershman, S. J. (2017). The 
successor representation in human reinforcement 
learning. Nature Human Behaviour, 1(9), 680.  

Schuck, N. W., Cai, M. B., Wilson, R. C., Niv, Y., Schuck, 
N. W., Cai, M. B., … Niv, Y. (2016). Human 
Orbitofrontal Cortex Represents a Cognitive Map of 
State Space Article Human Orbitofrontal Cortex 
Represents a Cognitive Map of State Space. Neuron, 
91(6), 1402–1412.  

Tang, E., Mattar, M. G., Giusti, C., Lydon-staley, D. M., 
Thompson-schill, S. L., & Bassett, D. S. (2019). 
Effective learning is accompanied by high-dimensional 
and efficient representations of neural activity. Nature 
Neuroscience, 22(June), 1000–1009.  

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., 
Crivello, F., Etard, O., Delcroix, N., … Joliot, M. 
(2002). Automated anatomical labeling of activations 
in SPM using a macroscopic anatomical parcellation of 
the MNI MRI single-subject brain. NeuroImage, 15(1), 
273–289.  

327


