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Abstract: 

Deep Brain Stimulation (DBS) has continuously gained 
popularity as a symptomatic treatment in diseases such 
as Parkinson’s Disease (PD), Essential Tremor (ET), and 
dystonia. For better understanding the mechanisms of 
DBS, a series of intraoperative Local Field Potential 
(LFP) recordings are acquired from patients during DBS. 
These recordings are vastly affected by stimulation 
artifacts (SAs). Despite the recent advancements in 
digital- and analog-based processing methods in 
removing SAs, a common approach in Neuroscience 
community is to delete an entire time interval affected by 
such artifact (lasting about 5 milliseconds after the onset 
of DBS pulse). In this paper, we propose a robust 
computational framework based on adaptive filtering 
strategy to automatically estimate the artifact induced by 
each individual DBS pulse, and to recover the neural 
response during the artifact. An estimate of the common 
identical artifact is obtained by fitting a B-Spline 
smoothing function to the average of all recordings 
followed by DBS pulse. The common artifact, for each 
individual pulse, is then fed to a Normalized Least Mean 
Square (NLMS) adaptive filter whose error is equal to the 
difference between the recorded data and the adapted 
artifact i.e., the recovered neural response. This 
framework is then confirmed using the LFP recorded 
from patients with PD at the level of Subthalamic Nucleus 
(STN). The artifact is visibly and quantifiably diminished 
after ~ 1.5 msec after the onset of DBS pulse. This will 
allow researchers to peek further into the mechanism of 
action and health effects of DBS. We believe that this 
work will broaden window of clarity will pave the way for 
the development of accurate bidirectional closed-loop 
DBS techniques. 
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Since the serendipitous invention of Deep Brain 
Stimulation (DBS) by Alim-Louis Benabid in the 1980s, 
DBS has been widely used in neurology, especially in 

treating movement disorders (Benabid, Pollak, 
Louveau, Henry, & Rougemont, 1987; Larson, 2014; 
Williams, 2010).  

The major question in DBS research is to understand 
how such stimulation modulate neural activity in specific 
parts of the brain, e.g., basal ganglia network (BGN) 
(Lio, Thobois, Ballanger, Lau, & Boulinguez, 2018). To 
tackle this question, it is substantial to study how neural 
activity (neural evoked potential) varies in response to 
DBS pulses. Nevertheless, DBS generates significant 
high amplitude electrical artifacts that fully obscure 
neural activity recorded by neurophysiological 
recordings like LFP, EEG, etc (Lio et al., 2018). The 
morphology of these artifacts depend on stimulator 
architecture, stimulation waveform, and electrode 
configuration (Zhou, Johnson, & Muller, 2018). 

Despite the recent advancements in both digital- and 
analog-based approaches to alleviate the effect of DBS 
artifacts, neuroscientists barely access to a clean 
neural signal right after the DBS pulse. Current methods 
for signal processing often handle the artifact by 
removing the noisy interval after the DBS onset. This 
interval can possibly include valuable information 
including both cellular and network-level evoked 
potentials associated with DBS. Some of the work in the 
literature can also include low-pass filters to remove the 
frequency of stimulation and higher, which is also 
flawed as it can remove neural oscillations in higher 
frequencies (e.g. Mideksa et al., 2016). 

In some other methods the recording electrode is 
simply turned off or turned to sample mode during 
stimulation. This technique is also flawed as the 
information in a time period is discarded . In this paper, 
we propose a novel algorithm based on adaptive 
filtering strategy to remove the DBS artifacts, and to 
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recover the neural response for right after the DBS 
pulse. 

Adaptive Filters 

Adaptive filters are powerful signal processing tools 
which have been favorably incorporated in neural time 
series analysis. These filters iteratively adapt their input 
signal to the desired noisy observation signal. Adaptive 
filters are significantly more appropriate than the usual 
linear filters when the time and frequency windows for 
information & noise overlap (Tan & Jiang, 2019).  

Normalized Least Mean Square (NLMS) filter 

NLMS uses a popular technique in data science, titled 
gradient descent, where the data matrix with the same 
dimensions as the training dataset changes with each 
iteration to decrease the difference between them (i.e., 
descend along the gradient) (Widrow, McCool, 
Larimore, & Johnson, 1976). 

Patient Details & Electrophysiology 

The Krembil Brain Institute has unique access to 
patients with DBS electrodes implanted in the 
subthalamic nucleus (STN) with externalized leads, 
allowing stimulation and recording of local field 
potentials from DBS electrodes 1 to 5 days after 
electrode implantation in fully awake and cooperative 
patients. Data were recorded from three male 
Parkinson’s disease patients while they were on their 
regular Parkinson’s disease medication. Two patients 
were implanted with Medtronic Inc. 3389 leads (4 
contact in-line cylindrical lead with 1.5 mm contact 
height and 0.5 mm intercontact spacing) and one was 
implanted with Boston Scientific Inc. Vercise leads (8 
contact in-line cylindrical lead with 1.5 mm contact 
height and 0.5 mm intercontact spacing). 

Stimulation and LFP Recordings 

Monopolar stimulation was delivered via a single 
macroelectrode contact, the contact as the cathode and 
an external electrode on the patients’ chest wall as the 
anode. The contact most likely located within the STN 
based on the intraoperative microelectrode recordings 
was selected for stimulation. The level of stimulation 
was adjusted for each patient individually as the highest 
tolerable stimulation level without side-effects (e.g., 
parathesia), resulting in an average stimulation intensity 
of 2.97 ± 0.5 (SD) mA. The stimulation was applied in 
the form of trains that consisted of 32 pulses (approx. 
250 milliseconds, 130Hz (clinical) and 5 Hz (research), 
monophasic, square waves, pulse width = 100 μs). The 
trigger pulses for stimulation were prepared using 
Spike2 software (Cambridge Electronic Design, 

Cambridge, UK) and delivered through Power 1401 
(Cambridge Electronic Design) to a constant current 
stimulator (Digitimer, Welwyn Garden City, 
Hertfordshire, UK). The LFP was sampled at 20kHz, 
3500 Hz low pass and DC high pass filtered, and 
amplified using a low gain SynAmps RT amplifier 
(Compumedics Neuroscan, Dresdan, Germany). 

Proposed Algorithm  

The theoretical framework of the filter is as follows: 

1. Aligning the neural recordings  

Aligning all the individual pulses followed by the DBS 
onsets is a necessary step toward automating our 
computational framework. Each DBS spike train 
comprises several pulses (~ 75 pulses in 5 Hz DBS). 
Our algorithm finds the peaks of recorded intensity and 
aligns them accordingly. Each pulse is then normalized 
to its baseline average. 

2. Estimating the common DBS-induced artifact 

The average of all individual aligned pulses – for 
about 5 msec after DBS onset – can be considered as 
the common artifact. However, this estimate of the 
artifact might contain an evoked neural response (which 
appears in the average). To eliminate the occurrence of 
evoked neural activity in the estimate of the common 
artifact, we use the B-Spline function (Yang, Ma, & Yu, 
2016) to smooth the average of the normalized DBS 
pulses. This function uses variable-degree polynomials 
to fit the recorded LFP data over repeating intervals of 
constant length.  

3. Recovering Neural Response using the 
Adaptive Filter 

The common artifact is fed to the NLMS filter, for each 
individual pulse, to track the variability of each DBS-
induced artifact, hence better recovering the neural 
activity. The filter was designed and implemented in 
MATLAB 9.6.0.1114505 (R2019a Update 2) 
[MathWorks, Natick, MA]. The NLMS filter is part of the 
DSP System Toolbox (Version 9.8) [Available on 
MATLAB Add-on Explorer]. 

Results 

The graphical representation of the three steps of the 
proposed algorithm is shown in Figure 1. As mentioned 
earlier, all the individual recordings following each DBS 
pulse are automatically selected, normalized and 
aligned. The B-spline method is then employed to 
smooth the average of those individuals, thus providing 
an approximation of the common DBS artifact. By 
feeding this common artifact to a NLMS adaptive filter, 
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the neural response corresponding to each individual 
DBS pulse is estimated. 

 

 
 

Figure 1. Block Diagram of Proposed Algorithm 
 

Figure 2 shows the result of applying the proposed 
algorithm to a segment of LFP recordings during 5 Hz 
DBS. This segment is composed of 110 DBS pulses 
followed by neural activity. The objective is to recover 

the neural activity within 5 msec after each DBS pulse 
where the neural activity is fully masked by the artifact. 

 
 

Figure 2. A) the adaptive filter in action. A) LFP 
recording during 5Hz DBS stimulation. By finding the 
maxima of the time-series, the signal peaks are found 
and indexed. B) The 35 pulses are then aligned from 5 
sampling points before, up to 120 sampling points after 

stimulation. It is then normalized by removing the 
mean activity to account for spontaneous differences 

between spikes. C) NLMS filter reconstructs the signal 
using the Spline model. D) Three different pulses are 

aligned. This method reconstructs the neural 
response, allowing for more investigations into the 

mechanisms of action for DBS. 
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As it is clear by visual inspection, this method 
significantly decreases the DBS artifacts to a great 
extent and recover neural oscillations for about 5 msec 
after DBS onset. 

Discussion 

The pronounced SAs shortly following the DBS have 
jammed the information collected in a short time-period 
(~ 5 msec) right after DBS. In this paper, we proposed 
a robust algorithm based on adaptive filtering approach 
that enables signal recovery in the first few milliseconds 
after DBS. The neural evoked potentials initiated by 
neuromodulation are pronounced in this interval. 

We demonstrated that the proposed algorithm 
adaptively matches the common artifact to the recorded 
data following each individual DBS pulse. This has 
three main advantages over the existing methods in the 
literature. First, our algorithm is robust to aliasing. 
Second, non-stationary changes of DBS-induced 
artifacts can be discarded from LFP recordings. Third, 
the oscillatory properties of each trial can be 
independently recovered.  

Furthermore, the NLMS filter benefits from a quick 
convergence rate (Borisagar, Sedani, & Kulkarni, 2011) 
which made the proposed algorithm effective to recover 
neural activity in a vert short time window. 

It is to be noted that although this algorithm was 
developed to remove artifacts from Local Field 
Potentials, it can be used on a plethora of other 
recordings such as EEG, ECoG, and fNIRS, and TMS. 
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