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Abstract
Recent discussions on the reproducibility of task-related
functional magnetic resonance imaging (fMRI) studies
have emphasized the importance of power and sample
size calculations in fMRI study planning. In general, sta-
tistical power and sample size calculations are dependent
on the statistical inference framework that is used to test
hypotheses. Bibliometric analyses suggest that random
field theory (RFT)-based voxel- and cluster-level fMRI in-
ference are the most commonly used approaches for the
statistical evaluation of task-related fMRI data. However,
general power and sample size calculations for these in-
ference approaches remain elusive. Based on the math-
ematical theory of RFT-based inference, we here develop
power and positive predictive value (PPV) functions for
voxel- and cluster-level inference in both uncorrected sin-
gle test and corrected multiple testing scenarios. More-
over, we apply the theoretical results to evaluate the sam-
ple size necessary to achieve desired power and PPV lev-
els based on an fMRI pilot study and find that minimal
sample sizes of 40 to 50 participants are required for cor-
rected cluster-level inference at medium effect sizes.
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Introduction
A fundamental goal of task-related functional magnetic reso-
nance imaging (fMRI) is to identify the cortical correlates of
cognition. An approach routinely used to achieve this goal
is mass-univariate null hypothesis significance testing in the
framework of the general linear model (Cohen et al., 2017).
In the recent debate on the reproducibility of research find-
ings in the life sciences, the statistical practices of fMRI re-
search have once again taken centre stage in the community
discourse (e.g., Poldrack et al. (2017)). Here, a particular em-
phasis has been on statistical power and its relation to typical
sample sizes in fMRI group studies (e.g., Button et al. (2013);
Geuter et al. (2018)). In task-related fMRI, statistical power is
broadly defined as the probability of detecting cortical activa-
tion, if this activation is indeed present. In general, statistical
power and, consequently, methods for computing the sample
sizes necessary to achieve desired levels of power depend
on both the statistical inference framework used and assump-
tions about the expected cortical activation.

A prominent statistical inference framework for null hypoth-
esis significance testing in fMRI research is based on ran-
dom field theory (RFT) (e.g., Worsley et al. (1992)). RFT-
based fMRI inference is a parametric framework that allows for

controlling the multiple testing problem inherent in the mass-
univariate approach. Technically, this framework rests on
analytical approximations to the exceedance probabilities of
topological features of data roughness-adapted random field
null models. RFT-based fMRI inference is implemented in
the two major data analysis software packages used by the
neuroimaging community, namely, Statistical Parametric Map-
ping (SPM) and the Functional Magnetic Resonance Imag-
ing of the Brain (FMRIB) Software Library (FSL). It encom-
passes up to five forms of statistical testing: uncorrected and
corrected voxel-level inference, uncorrected and corrected
cluster-level inference, and set-level inference (K. Friston et
al., 1996). With the exception of set-level inference, all forms
are routinely reported in the functional neuroimaging litera-
ture. More specifically, bibliometric analyses suggest that
RFT-based fMRI inference, especially corrected cluster-level
inference, accounts for approximately 70% of published task-
related human fMRI studies.

Aims and scope

In light of the widespread use of RFT-based inference, previ-
ously proposed approaches for the calculation of power and
sample sizes in fMRI research have a number of shortcom-
ings. First and foremost, most previously proposed frame-
works are not well aligned with the theory of RFT-based fMRI
inference (e.g., Mumford and Nichols (2008); Durnez et al.
(2016)), rendering them non-applicable for the most com-
monly employed forms of fMRI inference. Second, the frame-
work previously proposed by Hayasaka et al. (2007) that is
aligned with the theory of RFT-based fMRI inference only ad-
dresses voxel-level and not cluster-level inference. Moreover,
this framework does not address the variety of power types
that arise in multiple testing scenarios and thus remains im-
precise with respect to the interpretation of its ensuing power
and sample size values. Third, all previous frameworks as-
sume that under the alternative hypothesis, cortical activation
is expressed either in a known region of interest or over the
entire cortex. Notably, neither of these assumptions neces-
sarily reflects common intuitions of neuroimaging researchers.
Finally, no previous framework allows for the necessary sam-
ple sizes to be derived based on a desired positive predictive
value (PPV), a novel statistical marker for the quality of empiri-
cal research that has risen to prominence over the last decade
(Ioannidis, 2005). With the current work, we address these
shortcomings and report on a novel framework for power,
PPV, and sample size calculations in RFT-based fMRI infer-
ence.
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Theoretical background

Power functions

In single test scenarios, such as testing for the activation of a
single voxel, two types of errors can occur: the test may reject
the null hypothesis when it is in fact true, referred to as a Type
I error, and the test may not reject the null hypothesis when in
fact the alternative hypothesis is true, referred to as a Type II
error. From a frequentist perspective, Type I and Type II errors
are associated with their probabilities of occurrence, denoted
α and 1−β, respectively, and commonly referred to as Type
I and Type II error rates. The complementary probability of a
Type II error, i.e., the probability rejecting the null hypothesis
if the alternative hypothesis is true, is referred to as the power
β of a test. A fundamental aim of test construction is to main-
tain low Type I and Type II error rates. To this end, a desired
Type I error rate is usually selected first by defining a test sig-
nificance level α′, ensuring a Type I error rate of at most α′.
For many commonly used tests, the power at a fixed signifi-
cance level α′ can then be shown to be a function β(n,d) of
an effect size measure d and the sample size n. An often rec-
ommended approach in research study design is calculating
the necessary sample size n for which, under the assumption
of a fixed effect size d, the power reaches a desirable level,
such as β(n,d) = 0.8.

Minimal and maximal power functions

In multiple testing scenarios, such as simultaneously testing
for cortical activation over many voxels, a Type I or a Type II
error may occur for each of the individual tests involved, in-
ducing a variety of Type I and Type II error rates. For example,
commonly considered Type I error rates in fMRI research are
the family-wise error rate (FWER), defined as the probability
of one or more false rejections of the null hypothesis, and the
false discovery rate (FDR), defined as the expected propor-
tion of Type I error among the rejected null hypotheses. Clas-
sically, the FWER has been the prime target for Type I error
rate control in fMRI research. The prevalence of FWER con-
trol derives from the fact that the FWER can be efficiently con-
trolled using maximum statistic-based procedures, which were
at the centre of the early developments of RFT-based fMRI in-
ference (Friston, Frith, Liddle, & Frackowiak, 1991; Worsley et
al., 1992; K. Friston et al., 1994). Maximum statistic-based
multiple testing procedures allow the FWER to be controlled
using a family-wise error significance level α′FWE. Just as the
multiplicity of statistical tests in multiple testing scenarios in-
duces a variety of Type I error rates, it also induces a variety
of Type II error rates and hence power types. Power types
commonly considered in multiple testing are minimal power,
defined as the probability of one or more correct rejections of
the null hypothesis, and maximal power, defined as the prob-
ability of correctly rejecting all false null hypotheses. When
calculating the sample sizes necessary for desired power lev-
els in Type I error rate-controlled multiple testing scenarios, it
is hence essential to explicate the power type of interest. As
RFT-based fMRI inference naturally lends itself to the evalu-

ation of the minimal and maximal power functions βmin(n,d)
and βmax(n,d), respectively, we focus on these power types
in the current work.

PPV functions

In recent discussions, studies with low power have been re-
lated to high probabilities of the claimed effects to be false
positives (Ioannidis, 2005; Button et al., 2013). This relation-
ship is not inherent in classical frequentist test theory in which
Type I and Type II error rates are conceived independently. In-
stead, the dependency of Type I error rates on Type II error
rates, and hence power, arises in the context of a probabilistic
model that assigns probabilities to the null hypothesis of being
either true or false and the ensuing concept of a test’s PPV. A
test’s PPV, denoted here by ψ, is defined as the probability
of the null hypothesis being false given that the test rejects
the null hypothesis. The PPV depends on both the Type I er-
ror rate and the prior hypothesis parameter π ∈ [0,1], which
represents the prior probability of the alternative hypothesis
being true. For a constant Type I error rate and prior hypoth-
esis parameter, the PPV is a function of the test’s power and,
similar to power, a function ψ(n,d) of the effect and sample
sizes. Moreover, in multiple testing scenarios, such PPV func-
tions can be generalized to minimal and maximal PPV func-
tions ψmin(n,d) and ψmax(n,d) by substitution of the respec-
tive minimal and maximal power functions. Similar to power
functions, single test and multiple testing PPV functions allow
finding the sample size n for which, at a given effect size d, the
PPV function reaches a desirable level, such as ψ(n,d) = 0.8.

Partial alternative hypothesis scenarios

Previous approaches to the evaluation of power in fMRI in-
ference have typically relied on the assumption that the ex-
perimental effect of interest is expressed in a known cortical
region of interest, i.e., single test scenarios (e.g.,Mumford and
Nichols (2008)), or in multiple testing scenarios, across the en-
tire cortical volume (e.g., Hayasaka et al. (2007)). While there
are situations in which prospective power analyses are rea-
sonable under these assumptions, we here suggest that the
evaluation of necessary samples sizes may often be desired
although neither the precise location of an expected activation
nor the activation of the entire cortical sheet is reasonably as-
sumed. To this end, we propose to parameterize the power,
PPV, and sample size calculations in multiple testing scenar-
ios with a partial alternative hypothesis parameter λ ∈ [0,1],
which describes the assumed proportion of activated brain
volume. Intuitively, for example, λ = 0.1 corresponds to the
assumption that 10% of the cortex is truly activated. For-
mally, λ corresponds to the continuous spatial generalization
of the alternative hypotheses ratio of multiple testing scenar-
ios. Note that if λ = 0, the minimal and maximal power are
necessarily identically zero, as there are no true activations.
Equivalently, if λ = 1, the FWER is necessarily zero, as there
are no null activations.
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Figure 1: Minimal and maximal power and PPV functions for
voxel- and cluster-level inference in the corrected multiple test-
ing scenario. (A) Minimal and maximal power and PPV func-
tions for corrected voxel-level inference for a given sample size
n, effect size d, and partial alternative hypothesis parameter
λ (first three columns). The fourth column depicts the cor-
rected voxel-level minimal and maximal PPV functions for a
prior hypothesis parameter of π = 0.2. (B) Minimal and max-
imal power and PPV functions for corrected cluster-level in-
ference for a given sample size n, effect size d, and partial
alternative hypothesis parameter λ (first three columns). The
fourth column depicts the corrected cluster-level minimal and
maximal PPV functions for a prior hypothesis parameter of
π = 0.2. All cluster-level power functions were evaluated for
a CDT of u = 4.3, and all voxel- and cluster-level power and
PPV functions were evaluated for an exemplary resel volume
set of R0 = 6, R1 = 33, R2 = 354, and R3 = 705.

Results
RFT-based power and PPV functions
Based on the theoretical considerations above and the math-
ematical theory of RFT-based fMRI inference as recently re-
viewed in Ostwald et al. (2018), it is possible to develop a set
of power and PPV functions that are well-aligned with the RFT-
based inference framework. In the following, we highlight the
power and PPV functions βλ

min(n,d), βλ
max(n,d), ψλ

min(n,d),
and ψλ

max(n,d) for corrected voxel- and cluster-level inference
with fixed family-wise error significance levels α′FWE and with
fixed partial alternative hypothesis parameters λ. A full and
mathematically detailed account of this work is provided in
Ostwald et al. (2019).

Figure 1A depicts maximal and minimal power and PPV
functions for corrected voxel-level inference at a significance

level of α′FWE = 0.05. Specifically, the two leftmost panels of
1A depict the minimal and maximal power functions βλ

min(n,d)
and βλ

max(n,d) for corrected voxel-level inference and a partial
alternative hypothesis parameter of λ = 0.1. Achieving a min-
imal power level of βλ

min(n,d) = 0.8 for a medium effect size of
d = 0.5 requires sample sizes in the range of n= 15 to n= 30.
To achieve similar levels of maximal power βmax(n,d), the
same effect size requires sample sizes of n = 200 to n = 500.
As shown in the upper three panels of Figure 1A, increas-
ing the partial alternative hypothesis parameter to λ = 0.2
and λ = 0.3 decreases sample sizes necessary to achieve
a minimal power of βλ

min(n,d) = 0.8. For maximal power,
such a decrease is not observed. Intuitively, this relation-
ship can be understood as follows: increasing the proportion
of cortical activation increases the chances of detecting ac-
tivation at a single cortical location (minimal power) but not
of detecting activations at all locations (maximal power). Fi-
nally, for a prior hypothesis parameter of π = 0.2, PPV lev-
els of ψλ

min(n,d) = ψλ
max(n,d) = 0.8 can be achieved with ef-

fect and sample sizes largely similar to those for minimal and
maximal power, as depicted for λ = 0.3 in the rightmost col-
umn of Figure 1A. Figure 1B depicts maximal and minimal
power and PPV functions for corrected cluster-level inference
at a significance level of α′FWE = 0.05. As for voxel-level in-
ference, the leftmost panels of Figure 1B depict the minimal
and maximal power functions for a partial alternative hypoth-
esis parameter of λ = 0.1. Here, achieving a minimal power
of βλ

min(n,d) = 0.8 for a medium effect size of d = 0.5 re-
quires sample sizes in the range of n = 10 to n = 20, while
achieving a maximal power of βλ

max(n,d) = 0.8 at the clus-
ter level requires sample sizes of n = 30 to n = 50. As for
corrected voxel-level inference, increasing the partial alterna-
tive hypothesis parameter to λ = 0.2 and λ = 0.3 decreases
the necessary sample sizes for minimum power but not for
maximum power. Finally, for a prior parameter of π = 0.2,
ψλ

min(n,d) = ψλ
max(n,d) = 0.8 can also be achieved at the

cluster level with effect and sample sizes largely similar to
those for power (Figure 1B, rightmost column).

Exemplary application
The power and PPV functions presented above imply the sam-
ple sizes necessary to achieve desired power and PPV levels
over a broad range of possible effect sizes. To demonstrate
the practical value of these functions, we finally consider their
application in the concrete scenario of determining the sample
size necessary to achieve power and PPV levels of 0.8 for a
single effect size estimate. To this end, we re-analysed fMRI
data from the first 10 participants in a previously reported per-
ceptual decision-making study in which the amount of visual
evidence for a presented stimulus to depict a face or a car was
varied. At the group level, contrasting fMRI activity levels be-
tween high and low visual evidence revealed a cluster of activ-
ity in the left medial frontal gyrus, as shown in the upper panel
of 2A. Our aim was to use the effect size estimate derived
from this cluster to calculate the sample sizes necessary to
achieve minimal and maximal power and PPV levels of 0.8 for
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corrected voxel- and cluster-level inference at a significance
level of α′FWE = 0.05, a partial alternative hypothesis parame-
ter of λ = 0.1, and a prior hypothesis parameter of π = 0.2.
To this end, we evaluated the average T-values of the cluster,
yielding T = 4.65, which translates into an effect size esti-
mate of d̂ = 4.65/

√
10 = 1.47. However, it is well known that

effect size estimates resulting from the thresholding of mass-
univariate statistical parametric maps exhibit biases (Poldrack
et al., 2017). To correct our effect size estimate for this bias,
we capitalized on recent results by Geuter et al. (2018), which
are depicted in the lower panel of 2A. Specifically, using task-
related fMRI data from the Human Connectome Project 500,
Geuter et al. (2018) estimated the effect size bias exhibited
by activations detected in random data subsets of 10 to 100
participants from the approximately 500 participants. As re-
ported in Figure 7A of Geuter et al. (2018) and visualized in
the lower panel of 2A, this effect size bias is most severe for
small data subsets and decreases with increasing data sub-
set size. For a data subset of n = 10, the effect size bias
amounts to approximately ∆d = 1. We thus used this empiri-
cally validated bias estimate to correct our effect size estimate
to d̂c = d̂−∆d = 0.47. Using the power and PPV functions
discussed in the previous section we then obtained the fol-
lowing results: at the voxel level, sample sizes of n = 19 and
n = 374 are required to achieve minimal and maximal power
levels of 0.8, respectively (2B). At the cluster level, sample
sizes of n = 12 and n = 48 are required to achieve minimal
and maximal power levels of 0.8 (2C), respectively. For all
testing scenarios considered and for the current parameter
settings, slightly smaller sample sizes are required to achieve
PPV levels of 0.8.

Conclusion
In summary, we have developed power and PPV functions for
RFT-based fMRI inference, which represents one of the main-
stays of task-related fMRI data analysis. Further, we have
demonstrated, how these functions can be used to determine
the minimal sample sizes necessary to achieve desired power
and PPV levels in study planning, and find that for the most
commonly used approach of corrected cluster-level inference,
minimal samples sizes of 40 to 50 participants are required at
a medium effect size.
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