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Abstract
Unlike in perceptual tasks, it is unclear whether humans
near-optimally use uncertainty information in their visual
working memory (VWM) decisions. Some circumstan-
tial evidence is available: people can explicitly report
their uncertainty after a delay and can near-optimally in-
tegrate knowledge of uncertainty with working memo-
ries. However, it is unclear whether people can do the
conjunction: accurately store uncertainty information in
VWM and use it in a subsequent decision. To investigate
this, we collected data in two orientation change detec-
tion tasks. One task did not require the maintenance of
uncertainty information and the other did. We factori-
ally evaluate Bayesian observer models with different as-
sumptions about the memory noise generating process,
the observer’s assumption of this process, and the ob-
server’s decision rule. For both experiments, the model
that best fits human data assumes that memory preci-
sion varies as a function of stimulus reliability and other
internal fluctuations, observers know their memory un-
certainty on an individual-item basis, and observers op-
timally integrate information across items when making
their decision. These results provide evidence that partic-
ipants are able to maintain uncertainty information across
a delay, and use it optimally in subsequent decisions.
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While traditional theories of visual working memory (VWM)
have described remembering something as an all-or-nothing
process (e.g., Zhang & Luck, 2008), more recent theories
have described memories as noise-corrupted representations
of memoranda. In this framework, VWM is a limited resource
that can be flexibly allocated to any number of stimuli or stimu-
lus features (e.g., Bays & Husain, 2008; Yoo, Klyszejko, Curtis,
& Ma, 2018). The models in this framework, called resource
models, are able to explain human data better than previous
theories can (van den Berg, Shin, Chou, George, & Ma, 2012;
Fougnie, Suchow, & Alvarez, 2012; Bays & Husain, 2008; Ma,
Husain, & Bays, 2014).

In a resource model framework, categorization tasks such
as change detection are no longer trivial. Change detection
becomes a signal detection problem, in which an observer
must maintain the uncertainty information about the memory
in order to perform optimally (Wilken & Ma, 2004). Do people
maintain and use uncertainty? Do people perform optimally in
VWM change detection tasks?

We know that people are able to explicitly report their con-
fidence regarding a memory, (e.g., Rademaker, Tredway, &
Tong, 2012; Yoo et al., 2018) and choose which memoranda
are remembered better than others (e.g., Fougnie, Cormiea,
Kanabar, & Alvarez, 2016). This suggests that uncertainty
information can be maintained during a delay and explicitly
recalled, but does not investigate whether that information is
used in later decisions. Keshvari and others showed the com-
plement: they indicated that observers can use uncertainty
cues optimally in a change detection task, but did not inves-
tigate whether participants maintained that uncertainty infor-
mation in VWM (Keshvari, Berg, & Ma, 2012).

In this study, we replicate and extend the results of Kesh-
vari et al., 2012. We replicate the experiment and models
finding that people can use uncertainty information optimally
when that information is available to them at decision. We
then modify the experimental paradigm such that uncertainty
information must be maintained in order to be used and ask if
people are able to maintain and use memory certainty.

Experimental Methods
Seven participants completed two experiments (Figure 1).
Both experiments were four-item orientation change detection
tasks. Each trial began with a fixation cross. Four ellipses
were presented for 100 ms, followed by a 1000 ms delay, then
by the second stimulus set presentation for 100 ms. On one
half of the trial, the orientation of one ellipse changed; this
change was drawn from a uniform distribution and each item
was equally probable to contain the change. The participant
indicated with a button press whether they believed there was
an orientation change between the two displays.

100 ms1000 ms
Until

response1000 ms

100 ms

Figure 1: Trial sequence showing, in the second stimulus pre-
sentation, ellipses (top) as in Exp. 1 and lines (bottom) as
in Exp. 2. Lines were presented instead of ellipses to avoid
providing cues to the precision with which the first items were
encoded.

Importantly, each ellipse presented could provide orienta-

346

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



tion information with either high or low reliability, manipulated
through ellipse eccentricity. In order to perform optimally, the
participant would have to use knowledge of each item’s mem-
ory uncertainty when making decisions. In Experiment 1, the
stimuli on both displays were ellipses (top example Figure 1).
Ellipse reliability could be used as a cue of memory uncer-
tainty, which would allow people to use uncertainty information
without having to actually maintain it over a delay. In Experi-
ment 2, the stimuli on the second display were lines (bottom
example in Fig. 1), which does require the maintenaince of
memory uncertainty in order for it be used. Participants com-
pleted 2000 trials of each experiment over six one-hour ses-
sions.

Models: Fitting Experiment 1
In this first section, we replicate the models from Keshvari et
al., 2012 and use them to fit Experiment 1 data.

Encoding stage
The probability of change occurring on each trial is set to 0.5,
p(C) = 0.5. If C = 1, any item is equally probable to be
changed. All the orientations of the items presented on the
first display, ξξξ, are independently drawn from a uniform distri-
bution over orientation space.

If there is a change, this change ∆ is drawn from a uniform
distribution. The orientations at the second display, φφφ, are the
orientations at the first display plus ∆ at the location of change.
The noisy measurements of each item on each display, xxx =
(x1, ...,xN) and yyy = (y1, ...,yN), respectively, is drawn from a
Von Mises distribution centered on the actual orientation pre-
sentation,

p(xxx|ξξξ,κκκx) =
N

∏
i=1

p(xi|ξi,κx,i) =
N

∏
i=1

1
2πI0(κx,i)

eκx,i cos(xi−ξi)

p(yyy|φφφ,κκκy) =
N

∏
i=1

p(yi|φi,κy,i) =
N

∏
i=1

1
2πI0(κy,i)

eκy,i cos(yi−φi).

The κs are the concentration parameter of the Von Mises dis-
tribution, and are related to the precision with which each item
is remembered. The subscript of each κ indicates which item
it refers to (e.g., κx,i is for the ith item the first stimulus presen-
tation). We consider Fixed Precision and Variable Precision
encoding of items (van den Berg et al., 2012). With a Fixed
Precision assumption of encoding noise, the κ for each item
is determined only by its ellipse reliability; items with high el-
lipse reliability would be encoded with parameter κhigh, and
the lower reliability ellipse with κlow. In other words, κx,i and
κy,i are equivalent.

With a Variable Precision encoding scheme, κx,i and κy,i
are themselves random variables and thus can differ. The
Fisher information of the Von Mises distribution, J, is drawn
from a gamma distribution with mean precision J̄ and scale
parameter τ. We assume that the precision of memory cor-
responding to low-reliability ellipses are drawn from a gamma
distribution with mean J̄low, and those corresponding to high-
reliability ellipses are with J̄high.

Decision stage

Decision variable. We assume that the observer calcu-
lates for each item, the ratio of the likelihood of there be-
ing a change and the likelihood of there being no change,
di =

p(C=1|xi,yi)
p(C=0|xi,yi)

.

When calculating the decision variable, we consider that
the observer has an assumption about their memory noise
independent of the true generative process. We consider that
the observer may have one of the three assumptions:

1. Variable precision (V): mean memory precision varies with
ellipse shape, and there is additional noise for each item at
each presentation.

2. Fixed precision (F): memory precision varies only with el-
lipse shape.

3. Same precision (S): memory precision is the same through-
out the experiment, and does not vary with ellipse shape or
anything else.

Decision rule. The observer uses this decision variable to
decide whether they believe a change occurred. We consider
two decision rules: the optimal (O) and max (M) rules.

The Bayes-optimal observer responds “change” whenever
the probability of there being a change is greater than 0.5.
This is equivalent to observer responding “change” if the ratio
of the likelihood of there being a change and the likelihood of
there being no change is greater than 1:

pchange

1− pchange

1
N

N

∑
i=1

di > 1,

where pchange is the observer’s belief of p(C = 1). An ob-
server using the max rule does not optimally combine evi-
dence, but rather responds “change” whenever the maximum
evidence of change is greater than some criterion, k.

max
i

di > k.

Parameters

There are two possible encoding schemes ((V)ariable,
(F)ixed), three possible observer assumptions of noise
((V)ariable, (F)ixed, (S)ame), and two possible decision rules
((O)ptimal, (M)ax). Factorially combining each of these char-
acteristics would yield 12 different models. We choose not to
consider the two models in which the generative model is F
but the observer assumes V, so we test a total of 10 models.
We denote each model by the letters corresponding to their
encoding scheme, assumption, and decision rule (e.g., VVO
is the model with variable precision encoding, an observer that
assumes variable precision encoding, and an optimal decision
rule).

Observers with an V encoding scheme have parameters
J̄high and J̄low corresponding to the mean precision of the high
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and low reliability ellipses, respectively. The scale parame-
ter, τ, of the gamma distribution from which item-wise preci-
sion is drawn is shared across the two ellipse values. If the
observer incorrectly believes they are F, then they have pre-
cision Jhigh = J̄high and Jlow = J̄low for high and low reliability
ellipses, respectively. If the true generative model and ob-
server assumption are both F, then the model does not have
the τ parameter.

If the participant has the incorrect assumption that their pre-
cision is equal across reliabilities, items, and trials, then there
is an additional parameter Jassumed, corresponding to the as-
sumed precision of all items.

There is one additional parameter for the decision process.
If the observer uses the optimal decision rule, there is param-
eter pchange corresponding to the observer’s belief of the prior.
While it is 0.5, we allow the observer to have an incorrect be-
lief. If the observer uses the max rule, then we have parameter
k, corresponding to the decision criterion.

Model fitting and comparison
We used Bayesian Adaptive Direct Search (BADS; Acerbi &
Ma, 2017) to estimate, for each participant and model, the
parameter combination θθθ that maximizes the likelihood of the
data given the model. We compare models using AICc and
BIC. The results are consistent for both measures, so we only
show BIC results.

Results and Discussion
We find that the VVO model provides a good qualitative fit
of the data (Figure 2A). Model comparison (Figure 2B) indi-
cates that participants are best fit by the VVO model, which
assumes encoding with variable precision, an observer who
assumes variable precision encoding, and an optimal decision
rule. This model fit better for every subject for almost all mod-
els; it fit better than VVM for 4 of 7 subjects (worse by 4, 8,
and 26 AICc/BIC points, for the remaining three participants).
These results suggest, like Keshvari et al., 2012, that partici-
pants are aware of how their memory noise is generated, and
may use that information optimally when making change de-
tection decisions.

Models: jointly fitting both experiments
In the first experiment and models, we asked if people could
use uncertainty information optimally when it is presented to
them during the time of the decision. This was a standard
replication. In the second experiment and second set of mod-
els, we ask if people can maintain and use uncertainty infor-
mation optimally. Here, we go over the modifications to the
above models to test this prediction.

We have an additional parameter, J̄line, which corresponds
to the mean precision with which each line on the second dis-
play is measured by the observer. The gamma function from
which each item’s precision is drawn shares the same τ as
J̄high and J̄low. If the observer incorrectly assumes that they
have the same precision across stimuli, we allow them to have
different representations for ellipses, Jassumed,ellipse, and lines,
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Figure 2: A. Experiment 1model fits. M±SEM of data (error-
bars) and model predictions (fill) across subjects for the VVO
model. Colors indicate how many high reliability ellipses are
presented on each display (going from 0 in green to to 4 in
blue). B. model comparison. M±SEM BIC(VVO)-BIC(model)
across subjects (greater value indicates worse fit in compari-
son to the VVO model).

Jassumed,line. This leads to one more parameter for all models
than when fitting just Experiment 1, and two more if the ob-
server assumes same precision, S. We estimated ML param-
eters and compared models as described in the first section.

Results and Discussion
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Figure 3: Joint model fits. M± SEM of data (errorbars) and
model predictions (fill) across subjects for the VVO model for
Exp. 1 (left) and Exp. 2 (right). Colors indicate how many high
reliability ellipses are presented on each display (going from 0
in green to 4 in blue).

Again, we find the VVO model provides a good qualitative
fit of the data (Figure 3). The model comparison results of
the joint fit are also consistent with previous results. Partici-
pants are best fit by the VVO model, which assumes memory
representations with variable precision, an observer who as-
sumes variable precision encoding, and an optimal decision
rule (Figure 4). This model fit better for every subject for al-
most all models; it fit better than VVM for 5 of 7 participants
(worse by 17 and 19 AICc/BIC points for the remaining two
participants).
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Figure 4: model comparison. M ± SEM BIC(VVO)-
BIC(model) for all subjects (greater value indicates worse fit
in comparison to the VVO model).

Conclusions

In this study, we investigated whether people can maintain and
use uncertainty information in a VWM change detection task.
We replicated the experiment and models finding that people
can use uncertainty information optimally when that informa-
tion is available to them at decision. We then modified the ex-
perimental paradigm such that this information was no longer
available during the decision stage. Thus, uncertainty had to
be maintained in VWM in order to be used.

We find that that people were for the most part best fit by
a model that assumes variable precision in encoding, a vari-
able precision assumption of encoding, and an optimal deci-
sion rule. For three (Exp.1) or two (both experiments jointly
fit) of the subjects, a similar model with a max decision rule
fit better. These results are consistent with previous findings
that, in a variety of perceptual decision-making tasks includ-
ing change detection, the optimal decision rule almost always
fits data better than the max rule, except for the odd case in
which both rules perform similarly well. (Ma, Shen, Dziugaite,
& van den Berg, 2015).

While the results of the first experiment only indicate an op-
timal use of information, the results of the second experiment
indicate an ability to maintain that uncertainty information over
a delay. Overall, these results suggest that people maintain
and use uncertainty information in working memory, and use
them in tasks to maximize performance. This makes intuitive
sense, because in naturalistic settings we are not always pre-
sented cues about how well our memories were maintained.

With decoding models of neural data, we have gained in-
sight into how the brain encodes stimulus feature values (e.g.,
Harrison & Tong, 2009) and uncertainty (van Bergen, Ma,
Pratte, & Jehee, 2015). Perhaps future research may be able
to investigate how these representations are combined in the
brain when doing decision-making tasks like change detec-
tion.

Acknowledgments
We thank Marissa Evans for collecting the majority of the data
and Luigi Acerbi for being involved in previous iterations of this
project. This work was funded by R01EY020958 to WJM.

References
Acerbi, L., & Ma, J. W. (2017). Practical bayesian optimiza-

tion for model fitting with bayesian adaptive direct search
(Vol. 30). Advances in Neural Information Processing
Systems.

Bays, M. P., & Husain, M. (2008). Dynamic shifts of limited
working memory resources in human vision. Science,
321, 851–854.

Fougnie, D., Cormiea, M. S., Kanabar, A., & Alvarez, A. G.
(2016). Strategic trade-offs between quantity and quality
in working memory. J of exp psychol: HPP, 42(8), 1231–
1240.

Fougnie, D., Suchow, W. J., & Alvarez, A. G. (2012). Vari-
ability in the quality of visual working memory. Nature
communications, 3.

Harrison, A. S., & Tong, F. (2009). Decoding reveals the con-
tents of visual working memory in early visual areas. Na-
ture, 458(7238), 632–635.

Keshvari, S., Berg, d. R. v., & Ma, J. W. (2012). Probabilis-
tic computation in human perception under variability in
encoding precision. PLoS ONE , 7 .

Ma, J. W., Husain, M., & Bays, M. P. (2014). Changing con-
cepts of working memory. Nature neuroscience, 17 ,
347–356.

Ma, J. W., Shen, S., Dziugaite, G., & van den Berg, R. (2015).
Requiem for the max rule? Vision research, 116, 179–
193.

Rademaker, L. R., Tredway, H. C., & Tong, F. (2012). Intro-
spective judgments predict the precision and likelihood
of successful maintenance of visual working memory.
Journal of Vision, 12, 21–21.

van Bergen, S. R., Ma, J. W., Pratte, S. M., & Jehee, F. J.
(2015). Sensory uncertainty decoded from visual cor-
tex predicts behavior. Nature Neuroscience(18), 1728–
1730.

van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma,
J. W. (2012). Variability in encoding precision accounts
for visual short-term memory limitations. PNAS, 109,
8780–8785.

Wilken, P., & Ma, J. W. (2004). A detection theory account of
change detection. Journal of Vision, 4, 1120–1135.

Yoo, H. A., Klyszejko, Z., Curtis, E. C., & Ma, J. W. (2018).
Strategic allocation of working memory resource. Sci-
entific reports, 8(1).

Zhang, W., & Luck, J. S. (2008). Discrete fixed-resolution
representations in visual working memory. Nature, 453,
233–235.

349


