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Abstract: 

Convolutional neural networks (CNNs) share some 
similarity in representational structure to the primate 
ventral visual stream, however less is known about 
whether low-level visual features are represented in the 
same way by CNNs and the brain. Here, we focus on 
orientation perception, a well-understood aspect of the 
primate visual system. We asked whether convolutional 
neural networks trained to perform object recognition on 
a natural image database would exhibit an “oblique 
effect” such that cardinal (vertical and horizontal) 
orientations are represented with higher precision than 
oblique (diagonal) orientations, as has been measured in 
the primate brain. We obtained activation patterns from 
two networks (NASnet and Inception-V3) presented with 
oriented grating stimuli, and used a Euclidean distance 
metric to measure the discriminability between patterns 
corresponding to different pairs of orientations. In 
agreement with human perception, we find that the 
discriminability of representations generally peaks 
around the cardinal axes. This finding suggests that 
cardinality effects in human visual perception are not 
dependent on a hard-wired anatomical bias, but can 
instead emerge through experience with the statistics of 
natural images.  
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Introduction 

Hierarchically organized neural network models trained to 
perform object categorization have been shown to provide a 
reasonable approximation of the features represented by 
neurons in the ventral visual cortex of primates (Kubilius et 
al., 2018; Yamins et al., 2014). This general correspondence 
is present even at the earliest layers of convolutional neural 
networks (CNNs), which are often found to learn Gabor-
wavelet-like filters (Yamins & DiCarlo, 2016). However, the 
organization of low-level feature representations by CNNs 
has not been extensively characterized. Understanding 
whether CNNs develop idiosyncrasies that mimic the 
properties of the primate visual system is important for 
developing models that can inform our understanding of the 
brain. Additionally, because the majority of neural network 

properties are acquired through training, examining feature 
representations of CNNs is a useful tool for determining 
which properties of the primate brain might be innate and 
which are likely to be acquired through experience. 

In this paper we focus on the well-known “oblique effect”, 
in which human and non-human primate observers tend to 
show higher acuity around cardinal orientations (horizontal 
and vertical) compared to oblique orientations (Bauer, 
Owens, Thomas, & Held, 1979; Higgins & Stultz, 1950). 
This effect is thought to originate from an over-representation 
of neurons tuned to horizontal and vertical orientations, 
which has been measured in primary visual cortex of mice    
and cats, as well as primate V2 (Li, Peterson, & Freeman, 
2003; Salinas, Velez, Zeitoun, Kim, & Gandhi, 2017; Shen et 
al., 2014). According to an efficient coding framework, this 
anisotropy is adaptive because it allows for optimal 
processing of natural scenes, in which horizontal and vertical 
edges are common (Girshick, Landy, & Simoncelli, 2011). 

Based on this framework, we hypothesized that if a CNN 
is trained on a dataset of natural images, it may develop 
similar properties. To test this, we took neural networks that 
were pre-trained on a database of natural images, and 
obtained activations after presenting them with circular 
grating stimuli of varying orientations. We then measured the 
discriminability of activation patterns at each layer 
corresponding to neighboring orientations. We then 
evaluated how discriminability changed as a function of 
position in orientation space. Our results suggest that, similar 
to the primate brain, CNNs exhibit an anisotropic 
representation of orientation.   

Methods 

Visual stimuli 
Each CNN was presented with visual grating stimuli (square 
images 140 x 140 pixels) at a range of orientations, spatial 
frequencies, and noise levels. Stimuli were circular, 
sinusoidal gratings with smoothed edges (kernel size = 10 
pixels, sd = 5 pixels), presented against a mid-gray 
background. After smoothing, each grating had a radius of 65 
pixels. Orientations ranged between 1-180 in 1 degree steps, 
and spatial frequencies ranged from 0.04-0.22 cycles per 
pixel, in 4 logarithmically spaced steps (0.04, 0.07, 0.12, 
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0.22). We also superimposed three levels of Gaussian noise 
onto gratings. The first level had zero noise, the second level 
had Gaussian noise with a standard deviation equal to the 
grating amplitude/8, and the highest noise level had a 
standard deviation equal to the grating amplitude/4. We 
generated 4 gratings at each orientation, noise level, and 
spatial frequency, for a total of 8640 images. The phase of 
each grating was randomly selected within the range of 1-180 
degrees. 
 

Obtaining neural network activations 
We used two pre-trained CNNs for this study, NASnet (Zoph, 
Vasudevan, Shlens, & Le, 2017), and Inception-V3 
(Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2015), both 
of which were trained on the ImageNet classification dataset 
(Deng et al., 2009). We evaluated each model using 
Tensorflow 1.12.0 (Abadi et al., 2016) using the TF-slim 
library and Python 3.6 (Python Software Foundation). 
 

The full image set was passed through each CNN in 96 
batches of 90 images each, and the resulting activation 
patterns at each layer were recorded. To reduce the size of the 
activations, we performed principal components analysis 
(PCA) across all 8640 images, and saved a maximum of 500 
components for each layer.   

 

Measuring discriminability  
To evaluate how orientation discriminability varied at 
different points in orientation space, we calculated the 
Euclidean distance between activation patterns 
corresponding to each pair of neighboring orientations (1 
degree apart). We performed this calculation within each 
spatial frequency and noise level separately. Since there were 
4 gratings presented at each orientation (with randomized 
phase), this gave a total of 32 comparisons between each 
orientation and its leftward and rightward neighbors. We 
report the mean and standard deviation across these 32 
comparisons. Note that though the absolute values of 
Euclidean distance reported here are not particularly 
meaningful, the relative values are interpretable.    
 

Results and Discussion 
To visualize the organization of orientation representations at 
each layer of each CNN, we first plotted the first two 
principal components corresponding to each orientation 
(example shown in Figure 1). This revealed that as 
orientation was varied, representations tended to follow 
either a circular or linear trajectory. Similar patterns were 
found in both networks, with some variation across layers. 
Clustering by spatial frequency was also apparent. More 
importantly, the spacing between points on these plots reveals 
that pairs of stimuli close to the cardinal axes tended to be 
more dissimilar than pairs spaced an equal number of degrees 
apart but located near an oblique. 

 

 
 

Figure 1. Orientation representations around cardinals are 
more spaced out than those around obliques. The first two 
principal components corresponding to each stimulus are 

plotted for an example layer, with colors indicating 
orientation and shapes indicating spatial frequency.  

 
Next, we quantified this differential spacing effect by 

calculating the discriminability at each point in orientation 
space as described above. We focused first on the noise-free 
gratings. As shown in Figures 2 and 3, we found that the 
discriminability between neighboring orientations varied 
substantially with position in orientation space. Across the 
middle and late layers of both networks, discriminability was 
highest at the cardinals and was lowest at the obliques. 
Interestingly, many layers also showed an additional, smaller, 
peak centered over the oblique orientations (45 and 135 
degrees). This secondary peak is consistent with human 
psychophysics studies that have found a small boost in 
performance for orientations centered directly on an oblique. 
This finding also raises the possibility that the ImageNet 
dataset might not precisely match the orientation distribution 
of the natural environment, but may instead have an over-
representation of obliques as well as cardinals. Measuring the 
empirical distribution of orientations in this image database 
will be an important avenue for future work. 
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Figure 2. Discriminability is highest at cardinal orientations, 

especially at high spatial frequencies. Discriminability 
(Euclidean distance) is plotted versus orientation for an 

example NASnet layer (Layer 7). Error bars reflect standard 
deviation over 32 pairwise comparisons. 

 
    This discriminability effect was least pronounced at the 
earliest layers of each network, and became markedly more 
robust at higher layers. This may suggest that the effect was 
enhanced by feedforward connections between the earliest 
layers, as has been suggested to occur between macaque V1 
and V2  (Shen et al., 2014). Furthermore, the effect was most 
pronounced at the highest spatial frequencies (Figure 2), 
consistent with previous findings that orientation anisotropy 
in the tuning of single neurons is most robust for neurons 
preferring higher spatial frequencies (Li et al., 2003; Salinas 
et al., 2017; Shen et al., 2014).  
 

        

 
 

Figure 3. Changes in discriminability across orientation 
space are less pronounced when Gaussian noise is added to 

the stimuli. Error bars are as in Figure 2, colors indicate 
amount of noise.   

 
    Finally, we evaluated whether the changes in 
discriminability across orientation space varied as Gaussian 
noise was added to the stimuli. This revealed that the overall 
discriminability between pairs of stimuli increased with noise 
(seen as an additive shift of the curves in Figure 3). However, 
increasing noise also decreased the magnitude of the cardinal 
bias. One interpretation of this is that adding noise masked 
the oblique effect, similar to the effect of decreasing spatial 
frequency. Interestingly, recent work has suggested that 
different types of noise may have opposing effects on 
cardinal biases in orientation perception (Wei & Stocker, 
2015). Future work may focus on comparing the effects of 
different types of noise, such as bandpass-filtered noise, with 
the effect of Gaussian noise seen here.  
 

Conclusion 
Our results suggest that CNNs, like biological observers, 
represent stimulus orientations in an anisotropic manner, 
such that cardinal orientations are more discriminable than 
obliques. Since this bias was not built into the architecture of 
the networks, this suggests that cardinal biases can emerge 
solely as a consequence of experience with natural image 
statistics. This finding contrasts with results from mice and 
ferrets, in which cardinal over-representation decreases with 
experience (Coppola & White, 2004; Hoy & Niell, 2015), but 
is consistent with findings from primate V2, in which 
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cardinal biases become stronger with age (Shen et al., 2014). 
More generally, these findings highlight an example of 
convergence between CNNs and primate brains, and may 
inform the future development of more biologically-plausible 
computer vision models. 
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