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Abstract

Human expertise for recognizing unfamiliar faces has re-
cently been called into question, highlighting a deficit when
compared to familiar face recognition. We present sim-
ulations of a fixed-architecture deep convolutional neural
network (DCNN) with different training regimens, high-
lighting the extent to which learning to recognize many
"familiar" faces allows for robust, but incomplete, generaliza-
tion to new "unfamiliar" faces as compared to performance
after familiarization. With some training, verification per-
formance for previously unfamiliar faces improves modestly,
but the performance difference between unfamiliar and fa-
miliar faces is much smaller than the performance boost
from pre-training on faces as compared to objects in the
ImageNet 1000-way image classification database. We also
assess the generalization performance of our networks to
other fine-grained visual tasks such as bird species and car
model verification. We find that expert face recognition
does not improve generalization to birds or cars compared
to a network trained on a subset of ImageNet with all ve-
hicles and birds removed. We conclude that the specific
learned statistics within a domain of visual expertise deter-
mine its generalization to other domains, in contrast with
domain-general accounts which highlight level of processing
over domain-specific statistics.

Introduction

Faces are perhaps the most important visual stimulus for
humans. As such, adult humans develop substantial exper-
tise with faces, allowing effortless recognition of a very large
number of known individuals, along with recall of associ-
ated identity-specific semantic information. While it is clear
that humans are experts at face recognition, many ques-
tions remain concerning the specifics of this expertise, such
as whether innate mechanisms for face recognition exist,
whether this expertise arises through general learning mech-
anisms common to those recruited when becoming a visual
expert in other stimulus classes, and whether this expertise
is specific to familiar faces. In particular, this last question
has received substantial scholarly interest recently (Young
and Burton, 2018)(Rossion, 2018)(Sunday and Gauthier,
2018), and has important societal implications, in particular
in security settings (Young and Burton, 2018). The debate
can be summarized as follows. It is often claimed without
qualification that humans are experts at face recognition.
However, a body of research has shown that humans are
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substantially worse at processing faces of unfamiliar than
familiar individuals. In particular, face verification — deter-
mining whether two faces are of the same person identity —
is worse for unfamiliar than familiar faces. As such, Young
and Burton (2018) claimed that human expertise in face
recognition is specific to familiar faces. Other work from
these researchers has argued that unfamiliar faces are "not
faces" and are rather processed as objects (Megreya and
Burton, 2006). However, these claims have been received
with sharp disagreement. Sunday and Gauthier (2018) ar-
gue that humans are experts at unfamiliar face recognition
when compared to the appropriate baseline of general object
recognition. Further, Rossion (2018) argues that humans
are indeed experts at all forms of visual face recognition,
and that what differs between familiar and unfamiliar face
recognition lies at the level of semantics, claiming that such
semantic information allows for further gains in face verifi-
cation where discrimination at the perceptual level alone is
noisy or more difficult.

While we agree with points made by each of these authors,
yet a further alternative account exists: human shortcomings
in unfamiliar face recognition might be attributed entirely
to the nature of the visual task, rather than to a mechanism
specifically designed for recognizing familiar faces. If the
within-identity variability frequently exceeds the between-
identity variability, and some of the within-identity variability
is individual-specific, then unfamiliar face recognition will
necessarily be worse than familiar face recognition. We
sought to understand how much of the variability in natural
face images can be learned by a generic face recognition
mechanism, and how much of the variability must be learned
for each individual exemplar. The claim that face recognition
expertise is specific to familiar faces suggests that either the
majority of variability is individual-specific, or the human
recognition mechanism fails to capture important aspects
of generic variability which would improve recognition of
unfamiliar faces. To measure the generic and individual-
specific variability of faces, and the extent to which different
forms of learning can untangle these forms of variability
for successful recognition, we adopted a machine learning
approach using a standard convolutional neural network
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(VGG-16) with multiple controlled training regimens.

We tested unfamiliar and familiar face recognition by hold-
ing out a set of identities during the training of the network;
unfamiliar face recognition was performed after pre-training,
and familiar face recognition was performed throughout and
following fine-tuning on images of the previously unfamiliar
identities. The generalization of our pre-trained network to
unfamiliar identities serves as a metric of how much generic
variability may benefit face recognition. The generalization
gap between this performance and performance following
familiarization provides a metric of how much individual-
specific variability is required for successful verification.

Methods

We used the VGG-16 architecture as the deep convolutional
neural network in our simulations. For pre-training, we started
with either the ImageNet 1000-way classification database, or
the VGGFace2 face recognition database, both containing over
a million images. From ImageNet, we used a subset of approxi-
mately 600 categories for which entry-level labels were available
(Ordonez et al., 2013), and then removed all bird and vehicle
categories. We refer to the dataset with standard labels as
"ImageNet" and the set with entry-level labels as "ImageNet-
entry", notably containing the same images. For VGGFace2, we
removed several identities which overlapped with other databases
such as Labeled Faces in the Wild, leaving 8051 identities in a
dataset we call "VGGFace2-full". We then determined a subset
of VGGFace2-full which matched our ImageNet subset in total
images, however with more categories, which we refer to as "VG-
GFace2". A portion of each database was held-out of training for
validation. Pre-training was performed with stochastic gradient
descent over the full network, using an initial learning rate of
0.1 which was allowed to decrease 5 times by a factor of 10
upon plateau in validation set performance, up to 50 epochs of
training. Additionally, an untrained network was tested, with
randomly initialized weights as preceding pre-training.

To test unfamiliar face recognition, the output layer was pre-
served with the same number of identity nodes as were required
for pre-training (1000 for the random network). For testing famil-
iar face verification, in the first epoch, we appended new identity
units to the existing ones. Analyses and network fine-tuning
were run utilizing the PyTorch neural network modeling package
(Paszke et al., 2017) in the Python programming language.

To test familiar face recognition, we utilized the same images
used in testing unfamiliar face recognition, but preceded testing
with fine-tuning on a training set of images of the same identities.
Here, fine-tuning refers to stochastic gradient descent back-
propagated through the fully-connected layers only, with the
weights of earlier convolutional layers held fixed. The network
was not trained for face verification explicitly, but rather just
for face identification on the new set of identities, using a cross-
entropy loss. A fixed learning rate of 0.01 and momentum of
0.9 were used to prevent the need for a validation set given limit
images.

To perform face-verification, we adopted a threshold-free
similarity-based approach which may be applied to any layer
of the network, including the input images. First, given a set of
feature responses [z1, ..., &, over images, the cosine distances
between all test-set images were computed as D; ; = cos (x;, x;)
and then normalized to a range of 0-1. A range of thresholds
0 € [0,1] was then used to compute a matrix of same/different
judgments Y, = D > 0),. The Y}, matrices are then compared to
the true same/different matrix to compute true positive and false
positive rates t; and fi. The vectors t and f then constitute
a Receiver-Operating-Characteristic (ROC) curve, and the area
under the curve (AUC) was computed with numerical integration.
Finally, d’ was computed as d’ = /2 - invnorm(AUC), where
invnorm(z) returns the value where the standard normal CDF
equals z. This approach was applied to image pixels as well as
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Learning to identify novel faces
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Figure 1: Output accuracy of the deep neural network for
training and test images, before and throughout fine-tuning
on a new set of faces in Labeled Faces in the Wild (LFW),
per identity as a function of the number of training images
for that identity.

the output of each block of VGG16.

Our verification experiments utilized 3 datasets: the deep-
funneled images(Huang et al., 2012) of the Labeled Faces in the
Wild (LFW) database (Huang et al., 2007), the Caltech-UCSD
birds database, and the Stanford Cars database. For LFW, the
smallest dataset, identities with at least 18 images were selected
and 10 images were held out for the test set. For the other
databases, 19 images were held out for testing.

Results

In Figure 1, the training and testing accuracy are presented
at various stages of learning for a network trained on faces
in VGGFace2 and one trained on objects and animals in
ImageNet. While the face-trained network quickly and
robustly learned to categorize both training and testing
images for the new identities, the object-trained network
learned much more slowly and struggled to generalize its
learned knowledge to held-out test images.

Since identification accuracy does not allow us to compare
unfamiliar and familiar face recognition, the main approach
we discuss next is based on face verification, as described in
Methods. The distance-based verification metric is applied
to image pixels and each layer in the network, allowing for the
possibility that an earlier layer will yield superior performance,
and providing a measure of the extent to which performance
is based on image- or low-level statistics. Verification ROC
curves are shown for face and object trained networks in
Figure 2 (b) and (c), reinforcing the benefit of experience
with faces in verifying unfamiliar faces. As described in
Methods, we used these ROC curves to compute area-under-
the-curve which was then converted to d’. In Figure 2d,
face verification d’ is plotted for each form of pre-training,
before and after familiarization fine-tuning on the test set
of VGGFace2.



Face verification for (un)familiar faces

(a) Unfamiliar face verification can be difficult. Before familiar-
ization, the faces pre-trained network incorrectly classifies these
images as different. After familiarization, it recognizes them as
the same identity (Naomi Watts).

(b) ROC curves for the VGGFace2-pretrained network
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(c) ROC curves for the ImageNet-pretrained network
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Figure 2: Face verification by deep convolutional neural
networks with different training distributions matched in
total number of images. The ROC curves for VGGFace2-
and ImageNet-pretrained networks are shown in (b) and (c),
across layers and epochs of fine-tuning. We then convert
all results to d’, taking the pre-trained performance as the
unfamiliar baseline, and the performance after 50 epochs of
fine-tuning as the familiarized performance. These results
are plotted for each block of each network in (d). For (a),
verification decisions were computed at the threshold on the
line TPR =1 - FPR.

Here, the benefit of faces pre-training can be clearly seen,
along with the benefit of familiarization for each network.
Comparing the performance of VGGFace2-full with that of
VGGFace2, we see that the much larger size of VGGFace2-
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full lead to moderate gains in verification performance, gains
which are slightly larger for unfamiliar than familiar faces.
However, these gains were much smaller than the gain
from training on faces vs. objects in ImageNet, seen by
comparing the results for VGGFace2 with those for ImageNet
or ImageNet-entry.

Finally, we assessed verification of two non-face stimulus
sets: bird species in the Caltech-UCSD database, and car
models in the Stanford Cars database, shown in Figure 3.
Importantly, we removed all birds and cars from ImageNet
in the selection of our training set, so as to ensure that per-
formance was not based on any domain expertise. Despite
this, the ImageNet-trained models still performed better on
verification of these fine-grained nonface categories. This
result suggests that the image statistics learned for the devel-
opment of face expertise are specific to faces and generalize
only weakly to other categories. Further, the size of the face
training distribution had a minimal effect on performance
on these non-face categories.

To assess the influence of categorization level, which
some research has shown to be important for generalization
to new fine-grained recognition tasks (Tong et al., 2008),
we also trained a network to recognize the ImageNet cat-
egories at a coarser entry level. In contrast with the idea
that fine-grained performance for novel stimulus domains is
tightly linked to the categorization level of previously learned
stimuli, we found a weak and inconsistent effect of trained
categorization level on novel fine-grained verification. For
birds, a finer grained trained categorization level improved
performance moderately. However, for cars, the level of cat-
egorization had a very small effect that reversed sign before
and after familiarization. Notably, face recognition is finer
grained than either of the ImageNet categorization tasks,
and yet produced substantially worse performance than ei-
ther of the ImageNet-trained networks on these non-face
verification tasks.

Discussion

The idea that humans are poor at unfamiliar face recognition
has gained considerable attention recently, in part due to a
host of research demonstrating deficits on challenging face
verification tasks for unfamiliar vs. familiar faces. We argue
that this deficit is a natural consequence of the extreme
difficulty of unfamiliar face verification. In this paper, we
sought to elucidate this difficulty, placing human perfor-
mance in context. Our simulations revealed that a network
trained for face recognition was impaired on recognition
of unfamiliar faces compared to its performance following
familiarization. However, performance on unfamiliar faces
in deep layers of the network was very good compared to
earlier layers, suggesting that generic face variability learned
in pre-training aided performance on unfamiliar faces. We
found that increasing the extent of experience with familiar
face exemplars modestly improved generalization to new
unfamiliar identities, suggesting that continued experience



Fine-grained non-face verification
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(a) Results for the Caltech-UCSD birds database
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(b) Results for the Stanford Cars database

Figure 3: Verification of birds (a), and cars (b) by deep convolutional neural networks with different training distributions,

using the same approach as described in Figure 2.

may allow for further untangling of generic face image
variability, which likewise improves recognition even after
familiarization. Crucially, by testing networks pre-trained
on objects rather than faces, we demonstrated that mod-
est performance on unfamiliar face recognition depends on
learned domain knowledge of generic face variability through
pre-training on face images.

Further, we assessed generalization of the same DCNN
models used in the face verification experiments to two
non-face domains of fine-grained visual recognition — bird
species and car models. We found here that face pre-training
produced substantially worse performance on the novel fine-
grained recognition tasks, as compared to training on a
subset of ImageNet in which bird and vehicle categories
were removed. Further, we found that the level of trained
categorization level had a small and inconsistent effect on
fine-grained recognition, in contrast with earlier simulations
that highlighted an influence of trained categorization level
on generalization to new fine-grained tasks (Tong et al.,
2008). We believe that these results can be reconciled by
recognizing that the networks here were trained on many
more stimuli in a deep convolutional architecture capable of
extracting deeper semantically-relevant image statistics in
the learned domains. As a result, image domain statistics
dominated the effect of task, which might have been more
salient in a shallower architecture.

The claim that identity-specific invariance lies at the heart
of difficulty in unfamiliar face recognition has been explored
in computational simulations by Kramer et al. (2018). As
in our study, they found improved performance with famil-
iarization of a set of tested identities. However, their simu-
lations yielded very poor performance on unfamiliar faces.
In contrast, here, we show that impressive but sub-optimal
face verification performance is possible at the outset given

prior experience with faces, with the best performance in
the penultimate layer of the deep convolutional neural net-
work (DCNN) Our results thus add an important piece of
contextual information about the conditions of successful
unfamiliar face recognition. In future work, we plan to col-
lect comparable human data to more directly compare the
effects of visual familiarity in face recognition by humans
and machine learning systems.
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