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Abstract
In N-alternative Bayesian categorization, computing ex-
act likelihoods and posteriors might be hard for the brain.
We propose an approximate inference framework with ac-
tive sampling inspired by Bayesian optimization. While
it is common in Bayesian models to assume that the
agent makes noisy measurements of a state of the world,
here we use a more general (and more abstract) start-
ing point. We assume that the true (ideal-observer) like-
lihoods and posteriors of the categories are unknown to
the agent. The agent sequentially makes noisy measure-
ments of those likelihoods, one category at a time, thus
refining their beliefs over the true likelihoods and their
belief over the true posterior probabilities. To decide
whether to make another measurement, the agent sim-
ulates the consequences of doing so for the latter belief.
This framework accounts for two types of empirical find-
ings. First, we find that the average number of measure-
ments grows approximately logarithmically with N, remi-
niscent of Hick’s law. Second, we account for a puzzling
recent finding that decision confidence follows the differ-
ence between the two highest posteriors, rather than the
highest posterior itself. Our framework provides a novel
approach to explain human categorization by combining
approximate inference with active sampling.
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Introduction
The problem of categorization consists of choosing between
two or more discrete alternatives given the available evidence,
e.g. telling whether a young woman in an old picture is your
mother or your aunt. Facing a similar problem, an optimal
agent with access to exact likelihoods would simply apply
Bayes’ rule and choose according to their loss function (e.g.,
so as to maximize probability correct). However, the compu-
tation of exact likelihoods and posteriors might be infeasible
for the human brain, as suggested by both theoretical con-
siderations (e.g. Beck, Ma, Pitkow, Latham, & Pouget, 2012)
and empirical results (e.g. Ashby, Waldron, Lee, & Berkman,
2001). How do humans overcome these limitations in catego-
rization? Here we propose a partially normative Approximate
Inference framework with Active Sampling (AIAS), inspired by
Bayesian optimization (Jones, Schonlau, & Welch, 1998).

In this paper, we first introduce AIAS and discuss its relation
with other frameworks. Then we show that AIAS accounts
for Hick’s law (Hick, 1952) regarding response time, and a
recent finding that decision confidence follows the difference
between the two highest posteriors of all categories (Li & Ma,
2019).

Framework
Generative Model
We consider an N-alternative categorization task under un-
certainty. In this section, we take N = 3 for simplicity of ex-
position. In AIAS (Fig.1A), the true likelihoods L1,L2,L3 and
the true posterior vector P = (P1,P2,P3) are unknown to the
agent (Fig.1B,C). We assume that the agent acquires informa-
tion by sequentially making noisy measurements of the likeli-
hoods (Fig.1C), which we interpret as outputs of limited com-
putations. At each time step, the agent can make a likelihood
measurement lk

i for a chosen category i, where k is the posi-
tion in the sequence of measurements for category i.

Inference
Given a set of likelihood measurements and a prior over the
likelihoods, the agent is able to compute their belief about
the true likelihoods, i.e. the posteriors over the likelihoods
p(L1|l1), p(L2|l2), p(L3|l3) (Fig.1D), where li = (l1

i , l
2
i , · · ·)

is the vector of all likelihood measurements of category i.
They then again apply Bayes’ rule to compute their belief
about the true posterior vector, i.e. the posterior over the
posterior vector p(P|l) (Fig.1E), where l = {l1, l2, l3} is the
set of all likelihood measurements of all categories. For
computational tractability, in this paper we assume a factor-
ized log-normal distribution for the prior over each likelihood
p(logLi)∼N(µL,σ

2
L), log-normal noise of the measurements

of the likelihoods p(log lk
i |Li) ∼ N(logLi,σ

2), and a uniform
prior over categories.

Active Sampling, Termination, and Decision
Under the assumptions that measurements have a cost (time
or computational resources), picking the category to measure
randomly is unreasonable. For example, if a category seems
improbable to be the correct answer, the agent should not
waste more measurements on it. Analogously, because of
limited resources, the agent does not make infinite measure-
ments. At some point, they stop making measurements, se-

373

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



Figure 1: Generative model and inference process in AIAS. We consider a 3-alternative categorization problem for illustrative
purposes. Colors correspond to the three categories. A) Flow chart of the generative model and inference process. The true
likelihoods and posterior are unknown to the agent. B-C) Example true likelihoods, the corresponding true posterior vector, and
the agent’s noisy measurements of the likelihoods. D) Posterior distributions over the true likelihoods of the categories. E) The
posterior distribution over the posterior vector. Each point corresponds to a hypothesized posterior vector. The color of the point
represents the degree of belief.

lect a category, and get rewarded for being correct in the cat-
egorization. The two key questions are, thus, the problems
of active sampling (which category to make a measurement
from?) and of termination (when to stop?). In reinforcement
learning, the Bellman equation optimally solves this problem
by taking into account all future steps, but the general case is
computationally intractable. Instead, we consider here a my-
opic policy, which contemplates these questions only one step
ahead.

Given the posterior over the posterior vector, p(P|l), the
agent can calculate their belief over the maximal value in the
posterior vector p(max{P1,P2,P3}|l) and the variance of such
distribution, Var. In the next step, the agent considers each
category as a candidate for making another measurement.
Separately for each category i, they simulate a new likelihood
measurement based on current knowledge. The simulated
measurement leads to a change of the corresponding pos-
terior over the likelihood, a change of the posterior over the
posterior vector, and thus an absolute change of the afore-
mentioned Var, i.e. |∆Vari|. If the maximum of all |∆Vari|
(i = 1,2,3) is larger than a termination threshold ε, the agent
chooses the argmax category to make an actual measure-
ment of the likelihood. The agent then updates their posterior
over the posterior vector and repeats the whole simulation pro-
cess. Otherwise, the agent stops measuring and chooses the
category i that maximizes E[Pi|l], i.e. the category that they
believe maximizes probability correct.

Thompson sampling is a heuristic decision rule that approx-
imates the intractable marginalization over beliefs by choos-

ing the action that maximizes the expected utility for a single
sampled belief (Thompson, 1933). If we define the utility in
AIAS as the the absolute change of the variance after simula-
tion |∆Var|, the above sampling process is indeed Thompson
sampling. The intuition behind our approach is that categories
with high true posteriors – which are the important ones for the
decision – are likely to contribute more to the agent’s belief of
the maximal value in the posterior vector, and thus simulations
from these categories are more likely to lead to large |∆Var|.

Related Frameworks
Race model (Ratcliff, 1978): Race models assume that hu-
mans accumulate evidence for all alternatives simultaneously,
until the evidence for one alternative is larger than a threshold.
Such models have succeeded in explaining many behavioral
results (e.g., response time) in decision-making under multi-
ple alternatives. However, their process of evidence accumu-
lation is mostly descriptive1. In AIAS, the agent is also accu-
mulating evidence (the measurements of the likelihoods), but
the evidence is always incorporated in a Bayes-optimal way.
Thus, AIAS is more normative than race models. Also, most
race models do not have active sampling (but see Krajbich &
Rangel, 2011).

Resource rationality (Griffiths, Lieder, & Goodman, 2015):
If we assume the same generative model and inference, the
resource rationality framework would propose to solve the
problem by using Bellman equation. It performs optimally

1Under some conditions, race models can be normative (Bitzer,
Park, Blankenburg, & Kiebel, 2014), but this is not general.
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(under imprecise likelihoods), but is still computationally in-
tractable. Our approach provides a more computationally re-
alistic inference method as a solution by a combination of the
myopic step, heuristic termination rule, and Thompson sam-
pling. This is also the reason why we describe AIAS as “par-
tially normative”.

Information sampling (Oaksford & Chater, 1994): Infor-
mation sampling is a general idea that humans selectively
sample from the environment to maximize information gain.
AIAS is consistent with and extends information sampling, by
considering the brain’s computations themselves as a means
of information gathering.

Bayesian optimization (Jones et al., 1998): Bayesian op-
timization is a machine learning technique to optimize costly
and possibly noisy functions by building a posterior over func-
tions and actively choosing which point to sample next accord-
ing to an acquisition function that balances exploration and ex-
ploitation. Our approach is similar to Bayesian optimization on
a discrete space of (log) likelihoods, with a specific acquisition
function and termination rule, and a non-trivial correlation be-
tween choices induced by the normalization step going from
likelihoods to posterior.

Results
Hick’s Law
We now investigate the behavioral predictions of AIAS. Re-
sponse time is perhaps the most commonly probed behav-
ioral metric. In a multiple-alternative choice task, Hick’s law
states that response time increases logarithmically with the
number of alternatives (Hick, 1952). In AIAS, we define as
response time the total number of measurements for all cat-
egories. Thus, to reproduce Hick’s law, the number of mea-
surements should increase logarithmically with the number of
categories.

Figure 2: AIAS replicates Hick’s law. Error bars represent ±1
s.e.m. A) The number of measurements increases logarithmi-
cally with the number of categories, for different combinations
of termination threshold ε and measurement noise σ. B) Per-
formance remains close to the ideal observer in categoriza-
tion.

In simulation, we vary the noise of likelihood measurements
σ and the termination threshold ε. Higher noise or lower termi-

nation threshold increase the number of total measurements
(Fig.2A). Within a reasonable region of parameter space, mul-
tiple parameter pairs replicate the log form of Hick’s law and
produce performance close to the ideal observer, who knows
the true posteriors (Fig.2B).

Decision Confidence

In categorization, decision confidence provides another be-
havioral metric to investigate the underlying process. A lead-
ing hypothesis is that confidence reflects the subjective be-
lief of the probability correct of a decision (Kepecs & Mainen,
2012). However, a recent study has found evidence contra-
dicting this (Li & Ma, 2019). In Li & Ma’s experiment (Fig.3A),
spatial configurations of three colored dot clouds are displayed
on the screen. A black target dot is randomly generated from
one of the three clouds. Subjects need to judge which color
cloud the target dot comes from and report their confidence.
There are four different color cloud configurations (Fig.3B top
row). Li & Ma considered three models: the leading hypothe-
sis that confidence represents the highest posterior of all cate-
gories (Max model), that confidence represents the entropy of
the posterior distribution (Entropy model), and that confidence
represents the difference between the two highest posteriors
(Difference Model). Surprisingly, they found that the Differ-
ence model fitted their data best (Fig.3C, top row) and well
(Fig.3B, middle row).

The win of the Difference model is curious because it con-
flicts with intuitive notions of confidence. AIAS offers a differ-
ent perspective on the same findings. Since in AIAS, the pos-
terior itself is unknown, a natural construct of confidence is the
probability that the chosen category has the highest true pos-
terior probability – which is different from the probability that
the choice is correct. Because of sampling noise, the agent
might accidentally pick the category with the second-highest
posterior, but this would be associated with lower confidence.
Intuitively, this form of confidence will depend on the differ-
ence between the two highest posteriors. To test this more
thoroughly, we generated data from AIAS with parameters that
reproduce features of the human data. We then fitted the Li
& Ma models to these model-generated data. The generated
data resemble human data (Fig.3B bottom row) and the model
ranking is the same on generated data as on human data, with
the Difference model being the best-fitting model (Fig.3C bot-
tom row). This result suggests that the Difference model is
a high-level description of an underlying process that is de-
scribed by the AIAS, and it offers a new view of confidence.

Discussion

In this work, we develop a partially normative approximate in-
ference framework with active sampling to address the prob-
lem of categorization when the agent does not have access to
exact likelihoods. In AIAS, the agent selectively makes mea-
surements of the likelihoods to refine beliefs about the pos-
terior vector. We found that AIAS can account for two rather
different types of regularities in human data, namely Hick’s law
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Figure 3: AIAS accounts for confidence reports in three-alternative categorization. A) Li and Ma (2019)’s experiment paradigm.
Subjects see the configurations of three colored dot clouds. A black target dot is generated randomly from one of three color
clouds. The subjects judge which color cloud the target dot comes from and report their confidence. B) Top row: four different
configurations of color clouds. Middle row: human mean confidence reports (black) as a function of the target dot’s position,
with the fitting results of the Difference model (blue). Shaded areas represent ±1 s.e.m. Bottom row: as middle row, but for
AIAS-generated data. C) Model comparison results (AIC): the Difference model outperforms the Max model and the Entropy
model for both human confidence data (top row) and AIAS-generated confidence data (bottom row).

for response times and confidence ratings in multi-alternative
categorization.

These results form a basis for further testing AIAS. In partic-
ular, would it be possible to more directly interrogate the active
sampling process? Eye movements might provide a window
into the agent’s thought processes, potentially signaling which
category the agent is actively sampling from. For example,
fixation times are reported to correlate with the final choice in
a multiple-alternative choice task (Krajbich & Rangel, 2011),
thus providing a potential empirical correlate of AIAS’s mea-
surement process.
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