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Abstract: 

Visuo-spatial attention is a key mechanism for selecting 
goal-relevant information in natural scenes. We here 
implement a variant of the normalization model of 
attention into a spiking convolutional neural network, 
which approximates attentional gain with a change in 
firing rates. We apply this type of attention with different 
spatial extents to various levels in the processing 
hierarchy of a network performing object recognition in 
natural scenes. We find that close to the average object-
size attentional kernels yield the best performance, 
equivalent to a rather focused attentional enhancement. 
Furthermore, manipulating spatial attention within a 
single level was ineffective as benefits of spatial 
attention only arose from the combination of early-to-mid 
level modulations in the network hierarchy. Our results 
demonstrate that one can efficiently boost performance 
on the challenging task of recognizing objects in 
cluttered environments in a large-scale vision model by 
understanding attentional gain as a more or less precise 
representation of sensory information. 
Keywords: Spiking Neural Network; Spatial Attention; 
Object Recognition; Natural Scenes 

Introduction 
Visuo-spatial attention is a key mechanism for visual 
perception when dealing with the richness of natural 
scenes by allowing the system to prioritize processing 
at attended over unattended locations (Desimone & 
Duncan, 1995). Indeed, small, yet robust attention 
effects have been observed for a variety of performance 
measures such as reaction time, accuracy and 
perceptual sensitivity (Carrasco, 2011). While an 
extensive body of research found these attentional 
benefits for abstract, simple stimuli (e.g. Gabor patches 
in an orientation change task), the impact of spatial 
attention on natural scene processing is only started to 
be understood (Battistoni, Stein, & Peelen, 2017). 

Behavioral changes for abstract stimuli have been 
associated with a range of attentional modulations of 
visual neural activity, such as altered firing rates, noise 
correlations and tuning properties (Maunsell, 2015). 
One proposal that integrates these diverse attention 
effects is the Normalization Model of Attention (NMA, 
Reynolds & Heeger, 2009). In this model, the changes 
in neural firing rates are described as a function of 
stimulus drive (sensory input within the receptive field 
modulated by its feature tuning properties), attention 
field (specified over the feature tuning and receptive 
field of the neuron) and pooling across space and 
features. Specifically, the stimulus drive is modulated 
by the attention field and then in turn normalized to 
neighboring locations and features. Using simple 
orientation discrimination tasks, this model has been 
related to human behavior and to changes in activation 
in fMRI by modeling the relationship between attention 
field and stimulus size (Herrmann et al., 2010). An 
outstanding question that remains is whether the 
modeled principles in attentional gain in the NMA 
critically account for behavior also in more ecological 
scenarios such as object recognition in natural images. 

Lindsay & Miller (2018) have investigated the effect of 
attention in more complex visual tasks using 
convolutional neural networks (CNN) as a model of the 
visual system. Their work showed that feature similarity 
gain (Treue & Martínez Trujillo, 1999), especially when 
applied to the first network layers, has a smaller effect 
than formerly assumed in improving model 
performance. This work illustrates that principles 
derived from observations of single or populations of 
neurons not necessarily have to give rise to a 
behavioral effect in more complex visual scenarios. 
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Spiking convolutional neural networks (sCNNs) allow 
us to address the relationship between neural attention 
gain and behavior in a more biologically plausible way: 
By adjusting the firing threshold of individual neurons in 
the network, we can modulate firing rates as a function 
of attentional gain,  paralleling observations from 
attention effects in visual neurons (Desimone & 
Duncan, 1995; Maunsell, 2015). Importantly, the 
encoded activation in the spike trains is equivalent to 
the activations in a CNN, while the precision of the 
encoded activation can be changed by using less or 
more spikes to represent this activation (Fig. 1A, 
Zambrano et al., 2018). Thereby, we can manipulate 
the information processing strategy in the network and 
examine how this affects classification behavior.  

Here, we use sCNNs to investigate whether the 
principles from the NMA can affect performance during 
object recognition in natural scenes. Specifically, we 
simulate spatial attention to real-world images by 
selectively manipulating the firing threshold for a 
location at various levels of the network hierarchy, and 
probe behavior of the model as a function of valid or 
invalidly attended location. 

Methods 
Dataset 
To obtain images with a set of potential target 
categories sharing a context, we first curated a dataset 
from the Common Objects in Context database (COCO, 
Lin et al., 2014). We selected images with target objects 
that were big enough (>0.05% of the image), placed in 
a not too complex scene (spatial coherence < 1.2; 
Scholte et al., 2009), were not too central (outside of a 
radius of 5% from the image center) and salient enough 
(summed object probability density from DeepGaze II > 
0.04; Kümmerer, Wallis, & Bethge, 2016) resulting in 8 
eligible target categories (Fig. 3A) with at least 50 
images with a single target object. The spatial attention 
experiments were conducted on a category-balanced 

subset of the single-target images (N=526, 224x224 
pixels). Due to imperfect COCO annotations, some 
images could also feature other target categories. For 
the network fine-tuning, we used images with more than 
one target object present (Ntrain=7103, Nvalidation=1776, 
Ntest=2736). 

Deep Spiking Neural Networks 
Fine-tuning A ResNet18 architecture (He et al., 2015) 
optimized for post-training conversion to an adaptive 
spiking network and trained on the ImageNet dataset 
served as a basis for all experiments (for details see 
Zambrano et al., 2018). The last fully-connected layer 
of this model was replaced with 8 fully-connected units 
computing a sigmoid activation function. This model 
was fine-tuned on the multi-object dataset with a binary 
cross-entropy loss function to optimize for independent 
class distributions while the rest of the network’ weights 
stayed unchanged (lr: 0.0001, 200 epochs). The 
resulting model had a F1-score of 0.54 on the held-out 
multi-object test set.  

Evaluation Due to incomplete image annotations (cf. 
Dataset), we evaluated model performance in true 
positive rate to capture the changes in likelihood of 
detecting the chosen target category for the attention 
experiments. A model detected a class as present when 
the mean prediction time course (200-700ms after 
stimulus onset) surpassed 0.5 (Fig. 3A). We computed 
firing rate (FR) as being the mean number of spikes 
emitted by the network over 4 randomly chosen images. 

Spatial attention  
Precision Modulation We focused on attention effects 
along two spatial dimensions and in turn did not include 
feature tuning in our interpretation of the NMA. We 
computed the modulation for a given layer based on the 
NMA by equating the stimulus drive with 1 (equal 
amount of precision at every location). Expanding the 
model to two spatial dimensions (x1, x2), we obtain: 

R(x1, x2) = (A(x1, x2) / [S(x1, x2)]) - 1 

S(x1, x2) = s(IxWidth) * A(x1, x2), 

where A(x1, x2) is the attention field described by a two-
dimensional Gaussian centered at Ax with a width 
described by AxWidth, s(IxWidth) is the suppressive 
field capturing spatial pooling with IxWidth and * is a 
convolution. The resulting modulation matrix R is 
multiplied with the baseline-precision and normalized to 
the sum of an unmodulated layer (Fig. 2B-D).  

Baseline Precision We kept precision high (firing 
threshold: 0.06) in the layers before the ResNet blocks 
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and lowered overall precision in the remaining network1. 
The baseline for the remaining layers was determined 
by fitting a line to the decrease in top-1 accuracy as a 
function of precision. Taking this fit, we estimated the 
precision needed to perform at the mid-point between 
analog and chance performance (based on 
permutation-testing on the analog (non-spiking) model 
predictions), which served as a baseline (firing 
threshold: 0.55, FR: 29 Hz) for the precision 
modulations in the attention experiments (Fig. 1B). 

Model Modulation Spatial attention was modulated for 
a given ResNet block [batch normalization (BN), 
activation, convolution (Conv), BN, activation, Conv]. 
To maintain the spatial resolution between these 
blocks, AxWidth1,2 and IxWidth were divided by the total 
stride of a given layer in a given block [4, 4, 8, 8, 16, 
16]. Attention was applied in isolation to a respective 
ResNet block, successively from lower to higher 
ResNet blocks (1-6/ 2-6), or successively from higher to 
lower blocks (6-1/ 5-1, Fig. 3C). We approximated 
stimulus extent with the radius describing the mean 
target object area and chose AxWidth and IxWidth to be 
related to stimulus size as modelled in Heeger & 
Reynolds, 2009 (cf. Exp. 2B, 5C, & 6C) resulting in 
either a focused, object-sized or distributed attentional 
field (AxWidth1,2: 24, 40, 120, IxWidth: 80; Fig. 2B-D). 

Experiments We probed model performance for valid 
and invalid modulations of spatial attention location on 

                                                   
1 Pilot experiments on manipulating precision in isolated 
layers showed that lowering precision before the ResNet 
blocks resulted in more severe performance losses as 

the same single-target dataset. While a valid 
modulation was when Ax1,2 described the center of 
mass of the target object, an invalid modulation referred 
to a target location based on another image, which was 
at least 100 pixels away from the valid location. Results 
were compared to the neutral baseline, where precision 
was the same at all locations. All presented 
experiments were evaluated with equal spike numbers.  

Results & Discussion 
Attention Improves Object Recognition 
The experiments showed that spatial attention can 
introduce a behavioral trade-off, boosting object 
recognition for valid locations and moderately 
hampering performance for invalidly attended locations, 
with an equal number of spikes (Figure 3B). Notably, 
spatial attention had to be orchestrated across multiple 
subsequent blocks and have a width smaller than or 
equal to the average object to evoke this behavioral 
modulation (4.2% performance gain, 7.9% attentional 
modulation, Fig. 3). The observed moderate 
performance gains here are in line with earlier work 
manipulating attention in the early-to-mid layers of a 
CNN (Lindsay & Miller, 2018) and findings from 
electrophysiological and psychophysics studies of 
spatial attention (e.g. Chica et al. 2015). Our results 
extend this work by showing that one can boost 
performance by understanding attentional gain as a 
more or less precise representation of sensory 
information while keeping energy expenses constant. 
Future work can expand on this by also evaluating the 
prediction time courses as a proxy for decision making. 

Spatial attention as a hierarchical mechanism  
In line with earlier research (e.g. Herrington & Assad, 
2010), we found that effects of spatial attention are 
likely to act throughout the hierarchy and not in an 
isolated manner (Fig. 3D): effects of attention added up 
mainly across the early-to-mid layers (up to block 5). At 
the last stage, representations might be too coarse to 
be meaningfully targeted by spatial attention.  

Object recognition in natural scenes  
Our primary goal was to understand the impact of 
different attentional settings of the NMA on object 
recognition in natural scenes. We observed that an 
attentional width close to the average target object size 
was the most effective, followed by an even narrower 
width. A wider attentional enhancement carried no 

compared to other consecutive layers, indicating that the 
underlying activation distributions are qualitatively different 
from those in the ResNet blocks. 

379



effects. This not only highlights the importance of taking 
into account the relationship between attentional field 
and stimulus size for interpreting neural attention gains 
(Herrmann et al., 2010; Reynolds & Heeger, 2009), but 
also makes the prediction that if an object in a natural 
scene is not easily recognized (here equivalent to a low 
precision mode in the current experiments), it will be the 
most efficient for an observer to leverage expected 
object size within the scene context to scale spatial 
attention.  

In sum, we show that manipulating spatial attention 
based on the NMA in a deep spiking neural network 
affects object recognition in cluttered natural scenes.  
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