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Abstract: 

Face recognition depends on the generation of a view-
invariant representation. Faces are known to engage 
specialized mechanisms and it is therefore of interest to 
reveal to what extent is specific experience with faces 
necessary for the development of this representation. 
This question is hard to study in humans, but can be 
studied with Deep Convolutional Neural Networks 
(DNNs) trained with faces or with objects. To examine 
whether a face-trained and an object-trained networks 
generate a human-like, view-invariant representation, 
we first examined the similarity between the 
representations of faces across different head views. We 
then examined whether the networks use the same view-
invariant facial features that are used by humans for face 
recognition. Our findings show that a human-like view-
invariant representation of faces emerges at higher layers 
of a face-trained DNN, but not the object-trained DNN. 
The representations of faces were similar at lower layers 
of the face-trained and object-trained networks. These 
findings may resemble the face and object pathways in 
the human brain that are similar in low-level areas and 
diverge at higher levels of the visual cortex. They further 
imply that invariant face recognition depends on 
experience with faces, during which the system learns to 
extract face-specific, invariant features.  
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Introduction 

Humans can recognize faces across variations in appearance, 
such as changes in pose, illumination and expression. This 
ability to generate a view-invariant representation of faces 
allows humans to discriminate between identities of different 
people, as well as to generalize across images of the same 
person, under large variations in appearances. Faces are 
known to engage specialized mechanisms that are not used 
for non-face objects. It is therefore of interest to assess to 
what extent human-like face representations depend on 

specific experience with faces or may emerge also from 
general experience with various object categories.  
   For obvious reasons, this question is hard to study in 
humans, as it requires testing individuals who had experience 
with non-face objects with no exposure to human faces. 
Therefore, we turned to test this question in Deep 
Convolutional Neural Networks (DNNs). DNNs have a 
brain-inspired hierarchical architecture and have exhibited 
human-level performance in face-recognition (e.,g, Taigman, 
Yang, Ranzato, & Wolf, 2014), in particular for faces with 
large variations in appearance. They can therefore serve as 
good models for human, view-invariant face recognition. 

    To study the role of experience using the DNN model, 
we examined the face-representations generated by DNNs 
trained to either recognize faces, or objects. In addition, we 
compared the representation of both networks to the 
representations generated by humans who perform similarity 
rating tasks on the same set of face stimuli. This approach 
enables us to examine whether a DNN that was trained to 
recognize face identities or to recognize object categories, 
develops a human-like view-invariant representation of 
faces.  

 
Experiment 1: A view-invariant face 
representation in humans and DNNs 

Methods: 

Stimuli: To quantify view-invariance we used images of 15 
identities from the color FERET face-image dataset (Phillips, 
Wechsler, Huang, & Rauss, 1998). For each identity we took 
4 images: 1 – a frontal- image, hereby referred to as the 
“reference” image, 2 – a second frontal image, different from 
the “reference” image, hereby referred to as the “frontal” 
image, 3 – a quarter-left image, and 4 – a half-left image (see 
Figure 1 - top for example images). All face images were of 
adult Caucasian males, had adequate lighting, and had no 
glasses, hats or facial hair. The images were cropped just 
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below the chin to leave only the face, including the hair and 
ears.  

Face-trained and Object-trained DNNs: To compare 
between the face representations generated by a face-trained 
DNN and an object-trained DNN we used two pre-trained 
state-of-the-art DNNs: OpenFace (Amos, Ludwiczuk, & 
Satyanarayanan, 2016), which was trained on the CASIA and 
FaceScrub datasets, containing approximately 500,000 
images of approximately 10,000 identities, and the pre-
trained Inception-V3 object-recognition network from the 
pytorch “model-zoo”, which was trained on the ImageNet 
dataset. We used these two networks because they both have 
the same Inception-V3 backbone. The training sets of the face 
and object-trained DNNs contain many variable images for 
each label, to enable the DNNs to generate a view-invariant 
representation for faces or objects, respectively.  

Extracting representations from DNNs: During training, 
DNNs are optimized to assign the correct labels to the images 
in the training sets, these labels being either identities, in the 
case of faces, or object categories, in the case of objects. 
Images are processed by DNNs through a hierarchy of 
computational layers, each layer performing some 
multiplication/convolution of the previous layer output, 
followed by some non-linear function and optional pooling. 
The final stage of processing is a series of fully connected 
layers, ending with an output layer which has a size equal to 
the number of labels in the training set. We ignored the labels 
and the output layer, and examined the representation of the 
last layer of the network. The last layer, before the output 
layer, is in fact the final feature-extraction performed by the 
network. Similarly, we examined the representation of any 
layer within the network to study how the representation 
evolves from lower to higher level layers.  

Quantifying view-invariance of face-representations in 
DNNs: To quantify the view-invariance of the face-
representations generated by the face-trained and the object-
trained DNNs, we measured the L2 distances between the 
representations generated by the DNNs for face images in 
different views. To this end, we took the 15 reference images 
(see Stimuli section above), ran a forward pass on them 
through the DNN, and used the last layer of the DNN to 
obtain 15 feature-vector representations, one for each image. 
Then we measured the L2 distances between all possible 105 
pairs of the 15 images, obtaining a vector of 105 distances. 
This was the reference distance-vector. We then repeated this 
process for each of the 3 other image types we had – the 
frontal, quarter-left and half-left images, thereby creating a 
total of 4 distance vectors. The distances in all vectors were 
in matching order of identities for all types of images. To 
quantify to what degree is the face-representation generated 
by the DNN view-invariant or view-dependent, we measured 
the Pearson correlation between the reference distance-vector 
and each of the 3 other distance vectors. The correlation 
between the reference distance-vector and the frontal 
distance-vector was taken as baseline since both vectors 

included distances between representations of frontal images 
of the same people. A view-invariant representation is 
reflected in similar correlations of all face views with the 
reference frontal view. A view-dependent representation is 
reflected in higher correlation with a frontal pair and lower 
correlations as the angle view increases relative to the frontal 
faces. These correlations between feature-vector distances 
were computed for the face-trained and object-trained DNNs. 

Quantifying view-invariance of face-representation in 
humans: To compare the view invariance of face-
representations in DNNs to that of humans, we used the same 
approach described in the previous paragraph, only now, 
instead of using distance-vectors, we collected image 
similarity ranking from human subjects. Each subject rated 
similarity between the 105 possible image pairs of one of the 
4 image types on a scale of 1 (very different) to 6 (very 
similar) (as control we also added the 15 identical pairs, but 
they were later removed from analysis). In total we had 40 
participants rating similarities, an average of 10 participants 
per image type. The final similarity vector was calculated by 
taking the mean similarity rating for each image pair across 
the participants. Next, we calculated the correlations between 
the similarity vectors, as explained above. 

Results and Discussion 

Figure 1 shows the correlations between distance-vectors 
based on representations generated by the last layer of the 
face-trained DNN (1B), humans (1C) and object-trained 
DNN (1D). The pattern of view-invariance of the face-trained 
DNN is similar to human results, showing invariance across 
frontal and quarter-left views, with lower generalization for 
half-left views (p < .05).  

In contrast, the object-trained DNN shows overall lower 
correlations indicating worse generalization across different 
images of the same identities, and view-specific 
representations, indicated by much lower correlations for the 
quarter-left and half-left faces (p < .005).  

   In addition, we computed distance-vectors based on 
representations from all the layers of the networks, including 
the raw images, before any processing by the networks. We 

 

Figure 1: A human-like view-invariant face representation 
in face-trained but not object-trained DNNs 
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found that the initial layers are similar in both the face-trained 
and the object-trained DNNs, indicating that these layers 
perform similar low-level processing in both networks. As 
we progress up the network we found that view-invariance 
emerges at higher layers of the face-trained, but not object-
trained DNN (Figure 2). 
The results of Experiment 1 indicate that a human-like view-

invariant face representation emerges at the higher layers of 
the face-trained but not the object-trained DNN. These results 
indicate that during training to recognize faces, the face-
trained DNN has learned to extract high-level facial features 
that allow it to generalize across head views. This view-
invariant representation did not emerge in the object-trained 
DNN, which was trained to categorize objects, and has 
learned to extract different types of features that enable it to 
categorize different objects across different views. These 
features may also be view-invariant, but they are not adequate 
to generalize across faces in different views. 

Experiment 2: View-invariant features in 
humans and DNNs 
Given that the face-trained but not the object-trained DNN 
generated a human-like view invariant representation, in 
Experiment 2 we asked whether the face-trained network 
uses view-invariant features that are used by humans. In a 
series of previous studies ( Abudarham & Yovel, 2016, 2018; 
Abudarham, Shkiller, & Yovel, 2019), we discovered a 
subset of view-invariant facial features that are used by 
humans to recognize faces (i.e., critical features). Here we 
tested whether the face-trained DNN, but not the object-
trained DNN, uses the same set of view-invariant facial-
features as humans use to recognize faces. To that end we 
measured the L2 distances between face-representations of 2 
types of face-pairs: 1 - an original face vs. the same face in 
which we replaced the same critical features that humans use 
for face-recognition, and 2 – an original face vs. the same face 
in which we replaced non-critical features. If the face-trained 
DNN uses the same critical features as humans, then the 
distances between faces that differ in critical features will be 

larger than for faces that differ in non-critical features. We 
examined these distances in a previous study in a face-trained 
DNN and in humans (Abudarham & Yovel, 2016; 
Abudarham et al., 2019) and here we compared that to results 
of the object-trained DNN. 

Methods 

Stimuli: 25 faces were used to generate image pairs. For each 
of the 25 faces we had an original image, an image in which 
we replaced critical features (modified from the original 
image), and an image in which we replaced non-critical 
features (also modified from the same original image). In 
addition, we had a different not-modified image of that 
person, which we used as a reference image. Thus, we created 
4 image pairs: 1 - Same pair – the reference image vs. the 
original image, 2 - Different pair – the reference image vs. a 
reference image of a different identity, 3 - Critical features 
pair – the reference image vs. the original image with 
different critical features, and 4 – Non-critical feature pair – 
the reference image vs. the original image with different non-
critical features (See Figure 3A for example image pairs). 
Measuring image similarity: We used the same face-trained 
and object-trained DNNs as in Exp. 1, and the same method 
for generating face representations from the face images. 
Image similarity was L2 distances between image 
representations. 
 
Results and Discussion  
 
Normalized similarity scores were calculated by dividing all 
the distances by the maximum distance across all pairs. (see 
Figure 3B-D). In the face-trained DNN (Fig. 3B), the 
similarity scores for Same identity pairs are very low 
compared with scores for Different identity pairs, as expected 
from a DNN trained to recognize faces. Similarity for the 
Critical feature change pairs are not significantly different 
from scores for Different pairs. This indicates that when 
changing Critical features in images, the same features that 
are used by humans to recognize faces, the face-trained DNN 
perceives these faces as different identities, meaning that the 
face-trained DNN is sensitive to the same critical features as 
humans. The similarity scores for non-critical feature 
changes were significantly smaller than for the critical feature 
change pairs (p<0.001), indicating that similar to humans, 
these changes did not cause a change in identity for the face-
trained DNN. Figure 3C shows the human similarity scores 
on the same stimuli (Abudarham et al., 2019). The pattern of 
results in the face-trained DNN is similar to human results. 
Finally, we ran the same experiment using representations 
generated by the object trained-DNN (Fig. 3D). Here there 
are no significant differences in similarity scores for critical 
and non-critical features changes, indicating that the object-
trained DNN is not sensitive to the critical features used by 
humans to recognize faces. ANOVA with DNN type (Face-
trained, Object-Trained) and Face Type (Same, Low-PS, 

 

Figure 2: A human-like view-invariant face representation 
in higher layers of face-trained but not object-trained 
DNNs. Similar representations in low-level layers. 
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High-PS, Different) revealed a significant interaction 
between these two factors (p < .005). 
Fig. 4 shows the differences between distances for critical vs 
non-critical pairs across the layers of the face-trained and 
object-trained DNN. We see that the distances between 
original and critical-feature changes get larger than non-
critical feature changes only in high layers of the face-trained 
DNN. This is similar to Exp. 1, indicating that the sensitivity 

to the critical features emerges at the higher layers of the face-
trained but not the object-trained DNN (Figure 4). 

 
Results of Experiment 2 indicate that the face-trained but not 
the object-trained DNN uses the same critical features as 
humans use for face recognition. As we found in previous 
studies on humans, these features are invariant to pose 
changes. Therefore, we suggest that these same features are 
used by the face-trained DNN to generate a view-invariant 
face representation. In addition, the sensitivity to these 
features emerges only at the higher layers of the face-trained 
network, suggesting that the network learns to extract these 
high-level features at later stages of processing, after training 
with large variability faces. 

Conclusions 
We found that the face-trained, but not the object-trained 
DNN, generates a human-like view-invariant face 
representation. We found that this representation emerges at 
higher layers of the face-trained network, while lower layers 
of both networks are similar. These finding may resemble the 
neural pathways for processing faces and objects, that are 
similar in the low-level visual areas, and diverge to dedicated 
modules in higher levels of the visual system. We also found 
that this view-invariant face representation relies on the same 
set of view-invariant facial features that humans use for 
recognizing faces. We suggest that humans and face-trained 
DNNs learn to use the same invariant features based on the 
experience with faces in variable views, and that this view 
invariant representation cannot be learned from experience 
with non-face objects.  
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Figure 3: A Face-trained, but not object-trained DNN is 
sensitive to the same invariant features used by humans 

Figure 4: Sensitivity to human-like view-invariant features 
(green>cyan) emerges at higher layers of the face but bot 
object trained network. Similar representation in lower-
level layers. 
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