
Temporal Segmentation for Faster and Better Learning 
 

Brad Wyble (bwyble@gmail.com) 
Pennsylvania State University Psychology Department 

University Park, PA, 16802 USA  
 

Howard Bowman (hb5@kent.ac.uk) 
University of Birmingham, School of Psychology; also University of Kent, School of Computing 

Birmingham, UK; Canterbury, UK 
 
 

Abstract: 

The human visual system faces an extraordinary 
challenge in building memories from a continuous 
stream of visual data without the opportunity to store it 
and process offline. This suggests a crucial role for 
visual attention in attending to specific moments in time. 
This project outlines key data and theories related to 
human temporal attention. The focus of this submission 
is on bridging the divide between the human visual 
system and artificial models by explicating segmentation 
mechanisms that accelerate the ability to learn the 
structure of the world through continuous vision. A 
computational model that simulates the temporal 
dynamics of visual attention in humans indicates a role 
for attention in on-demand temporal segmentation of 
incoming information at the sub-second scale. We 
predict that in humans this segmentation plays a key role 
in 1) simplifying visual information for learning about 
object kinds through compression 2) segmenting 
information from neighboring fixations and 3) encoding 
the temporal sequence of events. Such segmentation is 
likely to also play  a key role in allowing artificial systems 
to learn from visual input in an online fashion, even 
though their specific temporal constraints are not shared 
with biology. 
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Temporal Attention in Humans 
One of the greatest challenges facing a cognitive 
system is the demand to focus a limited set of  
decoding, decision-making and memory-encoding 
processing resources effectively on the most valuable 
subset of data. This is the attention dilemma; it is 
ubiquitous across cognitive systems and exists at 
multiple layers within a given problem.  In the context of 
cognition, attention is most clearly defined as the set of 
processes that determine what information should be 
discarded.  Attention is crucial for allowing perception 
and decision-making systems to keep pace with 
incoming sense data but also, as will be argued here, to 
accelerate the long-term acquisition of knowledge 
about real kinds and causational interactions between 
them.   
 

It is necessary to consider attention as having a 
myriad of manifestations in a cognitive system. For 
example in human vision, starting from the retina, the 
concentration of cones at the fovea is a form of attention 
that privileges the reception of photons at that location 
and enables the use of eye movements to select 
information at a time scale of 1-5 samples per second. 
This physical instantiation of visual attention is 
complemented by covert attentional mechanisms within 
the brain itself (i.e. in ‘software’). These mechanisms 
can be further divided according to whether they select 
spatial regions of the visual field, or emphasize 
particular moments in time.  

 
The emphasis here will be on the evidence for 

temporal attention in humans and discussion of its 
computational advantages for learning in both natural 
and artificial systems. While there has been a tranche 
of attention models in computer vision in recent years, 
they have, but for a few exceptions, focused on the 
problem of spatial attention, i.e. at any given moment, 
what spatial regions of an image plane should be 
subject to enhanced processing.  Models that utilize 
temporal attention typically extract ‘key frames’  from a 
short video sequence to increase the accuracy of video 
decoding during supervised training.  While useful, 
these techniques lack application to the problem faced 
by a cognitive agent, which is how to focus attention in 
real-time processing during a continuous and unending 
stream of visual input. This is the problem faced by the 
human visual system, particularly during developmental 
years when the visual system is being tuned to learn the 
constellations of features that correspond to object 
kinds. To this end, research on human psychophysics 
has identified empirical phenomena that are related to 
the problem of deploying attention to, and withholding 
attention from, particular moments in time.     

 
The Timing of Visual Experience 
When visual input enters the retina, it is transmitted to 
the brain through subcortical structures in a span of 
50ms. Beyond this point, information perfuses through 
cortical and subcortical routes that transform it into a 
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variety of representations, storing some of them into 
memory, and also driving decisions and actions. 
Detection of a highly pertinent stimulus evokes a 
coordination of activity across widespread regions of 
cortex, and also occupies a brief focus in visual 
awareness. It is thought that this moment of awareness 
enables the updating of online memory representations 
(Polich 2007).  

 
The duration of this coordinated event has been 

measured with scalp recordings of the EEG, revealing 
the most canonical of brainwave findings, the P3 or 
P300 (Figure 1).  This electrical waveform occurs at 
roughly 300-800ms following the visual onset of an 
oddball stimulus (i.e. a stimulus that stands out from the 
background sensory data by virtue of its physical 
characteristics) or a stimulus that matches current 
goals. It is interesting that the duration of the physical 
stimulus that evokes a P3 has little effect on the 
duration of the P3  itself. Even a 30ms duration event 
elicits a P3 that lasts for about half a second.  The P3 
shown here is in response to a single letter target, and 
similar findings are obtained from nearly any visual 
stimulus that is presented in such a way as to  evoke a 
moment of visual focus and memory encoding. 

 
The Attentional Blink 
Along with the P3, visual targets evoke a corresponding 
effect in behavior. Detecting a target in a visual search 
evokes a temporal gap in the ongoing deployment of 
attention, which is referred to as an attentional blink 
(AB; Raymond, Shapiro & Arnell 1992;  Chun & Potter 

1995).  The gap can be measured by placing two 
targets  in sequence, and observing that the second 
target is hard to detect when it follows the first in a 
particular temporal window (Figure 2) or fixation 
sequence (Adamo, Cain & Mitroff 2013).  The width of 
this window is typically on the order of 300ms, but 
extends up to a second in duration for targets that bear 
more information (Ouimet & Jolicoeur 2007). The AB is 
one of the most robust effects in cognitive psychology, 
having been replicated many times, and across many 
visual stimulus types including letters, shapes, words, 
colors, and images.   

 
What is paradoxical about the AB is that the second 

target is easy to see when it occurs within about 100ms 
following the first item, an effect known as lag-1 
sparing. Sparing reflects a temporal window in 
attention that allows multiple items to be encoded into 
memory provided that they occur within a rapid 
temporal sequence. Sparing is theoretically important 
because it shows that the attentional blink is not an 
effect of depleted cognitive resources, but may instead 
be the signature of temporal segmentation, i.e. a means 
to insert temporal gaps into the processing pipeline to 
discretize the continuous stream of visual sense data.   
 
Computational theories of Segmentation 
Computational models have played a crucial role in 
formulating Insights from data regarding temporal 
attention. In the eSTST model (Wyble, Bowman & 
Nieuwenstein 2009), the attentional blink results from 
an inhibitory process that throttles the ongoing 

A

Figure 1. a. Example experimental paradigm in which subjects view a sequence of stimuli looking for targets with 
each display replacing the previous at 100ms. In this case, subjects would look for a letter among digit distractors 
although nearly any kind of intuitive task can be used (e.g. looking for images of vehicles, or specific animals).  b. 
Representative example of P3 component elicited by the paradigm shown above. The line depicts the average 
voltage on a scalp electrode near parietal cortex. At about 300ms after target onset there is a sharp increase in 
voltage with a slowly decaying envelope that is thought to reflect the update of memory representations. Note that 
the stimulus has been removed from the display 200ms prior to the onset of the P3.  
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deployment of attention while the mind is actively 
engaged with creating a memory. Perceiving a target 
triggers an attentional window that initiates the 
construction of a memory by copying information from 
a sensory register, such as visual cortex, into a general 
purpose memory store (i.e. working memory). It is also 
proposed that such memory encoding is the neural 
generator of the P3.  In the model, the P3 component 
can be simulated as the sum of (post-synaptic) neural 
activity within a distributed pool of gating neurons  
 

At the heart of the model is a competitive inhibition 
circuit that controls the timing of attentional windows. 
When targets appear in rapid sequence, the circuit 
simulates a window of attention that encompasses the 
targets. During this brief episode, attention is strongly 
engaged, allowing multiple pieces of information to be 
rapidly stored in memory, although at the cost of lost 
temporal order information. 

 
However,when targets are separated by a brief gap, 

the circuit initiates an attentional blink, which is a 
temporal interval in which attention is sluggish. This 
delays the encoding of subsequent information, to keep 
it temporally distinct from the preceding information.  

  
Models such as the eSTST explicate mechanisms for 

shaping the temporal profile of attention. When two 
items are presented in close temporal proximity, they 
are stored simultaneously into a joint representation 

that sacrifices their individuality. When they are 
separated by 200ms or more, the suppression of 
attention delays the encoding of the second target.  
Thus, the attentional blink reflects a mechanism that 
either groups, or separates sense data impressions, 
according to their temporal separation.     

   
Temporal Segmentation and Learning 
eSTST provided a series of predictions about how well 
participants will remember the identity and temporal 
order of a series of visual stimuli, many of which have 
been confirmed experimentally. However the more 
important predictions of this theory relate to learning, 
and these have been untestable using experimental 
methods in the laboratory. The big idea here is that 
temporal segmentation is advantageous during 
learning, particularly for children. In other words, it may 
be that the primary role of temporal segmentation in 
vision is not to improve perception in the moment, but 
rather to accelerate the learning of regularities about the 
visual world at the developmental time scale. 
 

To understand this idea it is important to remember 
that the set of visual patterns reflected by a given kind 
of object have clear regularities that cluster tightly in the 
space of possible sensory signals. It is these 
regularities that drive deep learning’s effectiveness at 
mapping pixels onto categories. When a given object is 
visually perceived, it will project a representation into 
the visual system, and the brain must learn the patterns 
of regularities that coincide with each kind of object. 

 
The second thing to remember is that the visual 

system samples visual regions in rapid succession, with 
eye movements occurring at approximately 200-500ms 
intervals. Thus, clusters of sense data from objects in 
the environment are sampled sequentially and this 
sequential sampling is, presumably, the set of 
regularities that shape visual object fluency in the 
developing visual system.  

 
In traditional DNN training algorithms, segmentation 

is provided by training on isolated images, but real-
world visual input is temporally continuous. Visual 
saccades provide some degree of segmentation, but 
their frequency is likely too fast to eliminate interference 
between distinct representations. As described above, 
processing even a simple stimulus event requires on 
the order of 500ms to complete. Therefore, information 
from neighboring visual fixations would likely intersect, 
reducing the ability to learn which clusters of features 
go together. Even when the world is relatively static, the 
sequence of eye movements will project a rapid series 
of distinct object representations onto the visual 
system, which is likely to impair the ability to learn the 
boundaries between those representations. 
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Figure 2. Classic example of the attentional blink 
(Chun & Potter 1995). The paradigm is like Figure 1a 
except that two targets are shown, separated by 0-7 
distractors. A 100ms interval means that the two 
targets are directly adjacent (since the first target is 
100ms in duration). Shown is the mean accuracy of 
correctly reporting the 2nd target’s identity from all trials 
in which the first target was also reported correctly.   
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The other key challenge faced by the developing 
visual brain is that information must be decoded in an 
on-demand fashion. Decisions of what information 
should be stored vs discarded, and how to separate 
information into discrete events must be made nearly 
immediately, rather than in an offline analysis.  It is our 
guess that the attentional blink reflects an on-demand 
temporal segmentation process. This approach allows 
saccades to sample information rapidly without being 
constrained by the slower processing of information of 
higher order cognitive mechanisms. Thus, the 
execution of visual saccades can be partially decoupled 
from the rate limit of higher order processing.  
 

Our modelling work suggests that temporal attention 
provides the following benefits for the learning of how 
visual features map onto specific object representations 
and also to learn temporal sequence information.  
 
Information Compression: The theory implies that 
human vision bundles information acquired from an 
attentional window, collapsing features across time in a 
temporal analog of a convolutional network’s spatial 
pooling function to reduce the dimensionality of the 
learning process. A further compression is achieved in 
that information from many fixations is identified but 
discarded without being encoded into memory at all. 
Thus, segmentation makes the learning problem more 
tractable by reducing stored data.   
 
Temporal Segmentation: The mechanism that 
produces the AB will reduce the overlap between 
sequential samples from the environment. This allows 
the eyes to sample new information while higher-order 
cognitive processes are still processing data from 
previous fixations. The new samples will typically be 
unable to enter higher order processing until the 
previous information has been completely processed. 
Thus, segmentation makes the learning problem more 
tractable by a form of temporal pattern separation. 
 
Temporal Sequencing: When two visual events occur 
sequentially at the same spatial location and very 
closely in time, people tend to merge them into a single 
episodic representation that ignores temporal order.  
However at a temporal separation of 200ms or more, 
the visual system will accurately encode their temporal 
sequence. This sensitivity to a temporal boundary for 
accurate sequence memory presumably reflects a 
compromise between information compression, and the 
need to represent causality of events at behaviorally 
relevant time scales. Thus, segmentation accelerates 
the learning of causality by enhancing sequence 
information. 
 

Development of more advanced video-learning 
architectures will, at some point, be able to test these 

predictions by simulating human learning and 
comparing cases with or without brain-inspired 
segmentation algorithms to empirically measure their 
effectiveness.  Such work will forge a new link across 
the areas of cognitive, developmental and 
computational areas of psychology. Moreover it is 
predicted that analogs of these segmentation 
algorithms will ultimately be necessary for developing 
artificial intelligence systems that can learn through 
environmental immersion. Regardless of computational 
capability (within reasonable boundaries), the 
processing of real-time information will serve as a 
crucial limit in cognitive architectures. For any amount 
of computation, it will almost always be more efficient to 
focus processing on information from specific moments 
in time, than to distribute that processing uniformly. The 
brain provides a roadmap for thinking about how to 
make such decisions in real-time. 
 

Acknowledgments 

This work was supported by NSF Grant 173422 

References  

Adamo, S. H., Cain, M. S., & Mitroff, S. R. (2013). Self-
induced attentional blink: A cause of errors in 
multiple-target search. Psychological science, 
24(12), 2569-2574. 

Chun, M. M., & Potter, M. C. (1995). A two-stage model 
for multiple target detection in rapid serial visual 
presentation. Journal of Experimental psychology: 
Human perception and performance, 21(1), 109. 

Ouimet, C., & Jolicœur, P. (2007). Beyond Task 1 
difficulty: The duration of T1 encoding modulates the 
attentional blink. Visual Cognition, 15(3), 290-304. 

Polich, J. (2007). Updating P300: an integrative theory 
of P3a and P3b. Clinical neurophysiology, 118(10), 
2128-2148. 

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). 
Temporary suppression of visual processing in an 
RSVP task: An attentional blink?. Journal of 
experimental psychology: Human perception and 
performance, 18(3), 849. 

Wyble, B., Bowman, H., & Nieuwenstein, M. (2009). 
The attentional blink provides episodic 
distinctiveness: sparing at a cost. Journal of 
experimental psychology: Human perception and 
performance, 35(3), 787  

392


