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Abstract
Convolutional neural networks (CNNs) are a state-of-the-
art machine learning method, partially inspired by the hi-
erarchical structure of cortex. They typically process in-
formation from input to output in a feedforward manner.
It has been shown that incorporating feedback pathways
can improve their performance and robustness. However,
little is known about why feedback helps and how feed-
forward and feedback signals are best combined.

Here, we compare feedforward and feedback networks
using a multi-digit classification task, quantifying perfor-
mance as well as robustness against image noise. We
show that the advantage of feedback networks which add
the feedback to the feedforward signal is largely due to
the increased receptive field size of their neurons. In ad-
dition, we show that networks which use modulating or
subtractive feedback (inspired by theories of feedback
processing in cortex) outperform additive architectures
and have increased robustness against noise.

These results provide a first step towards using feed-
back in convolutional neural networks more effectively.

Keywords: deep learning; convolutional neural networks; feed-
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Introduction
Deep networks are currently the most successful method for
a large number of computer vision tasks and are increas-
ingly seen as a possible model for the human visual system
(Kriegeskorte, 2015). They are partially inspired by the hier-
archical arrangement of processing areas in visual cortex and
similarly process images via a sequence of trainable layers.
However, one crucial difference between biological and deep
vision is that the latter is not a one-directional hierarchy but
has abundant feedback connections (Kravitz, Saleem, Baker,
Ungerleider, & Mishkin, 2013).

Incorporating feedback connections in deep networks has
several possible advantages. Zamir et al. (2016) argued that
feedback networks can structure their predictions according
to a taxonomy and make rough predictions early on. They
proposed a generic way to implement feedback in CNNs us-
ing convolutional long short-term memory (LSTM) layers and
showed that they outperform comparable feedforward net-
works on several tasks. Similar results were demonstrated
with a feedback architecture based on residual networks (Liao
& Poggio, 2016). Spoerer, McClure, and Kriegeskorte (2017)

showed that networks with feedback outperformed networks
without when controlling for the number of trainable parame-
ters and that this was especially the case in challenging con-
ditions with visual occlusions or noise.

While these studies show that feedback improves network
performance, it is not clear how feedforward and feedback sig-
nals should be combined. Some studies added forward and
feedback signals (Liao & Poggio, 2016; Spoerer et al., 2017),
while others used schemes based on LSTMs (Zamir et al.,
2016). Lotter, Kreiman, and Cox (2016) used a more elabo-
rate architecture based on predictive coding, a scheme that
may also be used in cortex (Spratling, 2008).

Here, we evaluated several possible schemes for combin-
ing feedforward and feedback signals with respect to their per-
formance on a multi-digit classification task as well as their
robustness to noise. We compared schemes using addition
(as previous works), gating (inspired by LSTMs), modulation
(inspired by biased competition (Spratling, 2008)), subtrac-
tion and division (both inspired by predictive coding (Spratling,
2008)). The modulating and subtractive feedback architec-
tures offered the best tradeoff of performance and robustness.

Methods

Datasets

All networks were trained on multiMNIST images (Sabour,
Frosst, & Hinton, 2017). Each image was generated by sam-
pling two digits from the MNIST training set (Lecun, Bottou,
Bengio, & Haffner, 1998), applying a random shift of up to 4
pixels in x- and y-direction to each and superimposing them by
a pixel-wise maximum operation. Example images are shown
in Figure 1. The two digits in each image typically had a large
overlap, such that the network had to disambiguate local in-
formation, similar to the digit clutter condition in (Spoerer et
al., 2017) but on handwritten instead of computer generated
digits.

Test images were generated in the same way as the train-
ing images, but from the MNIST test dataset. In addition, noisy
versions of the test dataset were generated by adding varying
salt-and-pepper noise or white noise to the images (see Fig-
ure 1 c and d).

Networks

We evaluated nine network architectures. Five of these
were feedback networks with different coupling mechanisms.
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Figure 1: a) and b) Example images from the MultiMNIST
dataset. c) Example image with 50% salt-and-pepper noise.
d) Example image with white noise where σ = 0.5.

Table 1: Comparison of network architectures.

Net Layers Kernel Parameters Top RF
b 2 3x3x32 9,898 5x5
bf 2 3x3x45 19,234 5x5
bk 2 5x5x32 26,794 9x9
slim 8 3x3x17 18,676 17x17
fb 2(x4) 3x3x32 19,114 17x17

The remaining four networks were feedforward networks and
served as baselines.

Feedforward networks Three of the feedforward networks
were adapted from Spoerer et al. (2017). The bottom-up net-
work (denoted b) was equivalent to a single forward pass
through a feedback network without any recurrence. It con-
sisted of two convolutional layers with 32 kernels of size 3x3
and rectified linear unit non-linearity, followed by local re-
sponse normalization (lrn).

Since feedback networks had additional connections from
the second to the first layer, their number of free parameters
was higher. Spoerer et al. (2017) proposed to control for this
with two additional architectures: one with additional feature
maps per layer (denoted bf) and one with larger kernels (de-
noted bk). For a comparison of the network architectures and
their number of free parameters, see Table 1.

These baselines control for the number of free parameters,
but not for the processing depth and the size of the highest re-
ceptive field. Feedback networks are unrolled over time (see
Figure 2), resulting in more convolutions between the first in-
put and the final readout. Each convolution increases the ef-
fective size of the receptive field of the top-most neurons, such
that neurons in a feedback network could integrate information
from a far larger spatial extent (17x17 pixels, in contrast to 5x5
to 9x9 pixels in feedforward architectures). To control for this
aspect, we also included a narrower but deeper feedforward
network (denoted slim) with 8 layers, resulting in a 17x17 re-
ceptive field at the top level as well.

Feedback networks All feedback networks were based on
network b, with an additional convolutional feedback connec-
tion from the upper to the lower layer. This feedback intro-
duced a cyclic dependency, which was implemented by un-
rolling the network over time (four time steps, see Figure 2).
They differed in the way the forward and backward signal were
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Figure 2: Network architectures. A) Bottom-up network with
two blocks of convolutions with local response normalization
(lrn), followed by readout (global pooling and dense layer). B)
Feedback architectures with an additional recurrent connec-
tion. C) Unrolled feedback network over timesteps to resolve
cyclic dependency introduced by feedback.

Table 2: Feedback schemes.1

Network conv(x,y) =
add r(w f f ∗ x+w f b ∗ y+b)
gate r(w f f ∗ x�σ(w f b ∗ y)+b)
mod r(w f f ∗ x� (1+w f b ∗ y)+b)
sub r(w f f ∗ x+b)−w f b ∗ y
div r(w f f ∗ x+b)�

[
w f b ∗ y

]
ε

combined (see Table 2).
Previous work on feedback in CNNs simply added forward

and feedback signals, after convolving each with a different
kernel, and applied a non-linearity (Liao & Poggio, 2016; Spo-
erer et al., 2017). We call this the additive architecture (add).

In contrast, Zamir et al. (2016) used LSTMs to combine
feedforward and feedback inputs. LSTM cells use several
gates to select which parts of the input and recurrent state
should be processed. We designed one feedback architecture
(denoted gate) that used a simplified version of this gating
principle, such that feedback (transformed by a sigmoid non-
linearity) selected whether feedforward signals were passed
on or suppressed.

Another possible role of feedback is to amplify parts of the
forward signal. This has been proposed as a canonical cor-
tical computation (Brosch & Neumann, 2014). Since each
convolution was followed by local response normalization, this
scheme resembles biased competition (Spratling, 2008), with
feedback acting as a bias and normalization putting the cells
into competition. We denote this architecture as mod (modu-
lating).

Finally, feedback could have a suppressive effect, filtering
out parts of the forward signal that are not informative. This
is akin to predictive coding, which can be implemented by
subtractive or divisive feedback (Spratling, 2008). We imple-
mented both versions, denoted sub and div, respectively.

1With forward input x, feedback input y, bias b, weights w f f and
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Figure 3: Performance on the test set.

Training

The training was carried out in two steps. First, several short
training runs were carried out for each architecture to optimize
the learning rate and the strength of the local response nor-
malization layers. Subsequently, each network architecture
was trained ten times with different random initializations.

All kernels were initialized using the Glorot initialization
scheme (Glorot & Bengio, 2010) and subject to L2 regular-
ization with a coefficient λ = 0.0005 throughout the training,
as in (Spoerer et al., 2017). Input images were normalized to
have zero mean and unit variance. Optimization was carried
out with stochastic gradient descent and a momentum term of
µ = 0.9. We used TensorFlow 1.8.0, Python 3.6.5 and NumPy
1.14.3 on Nvidia V100 GPUs.

Results

We measured performance as multiclass top-k accuracy,
where k is the number of digit classes in an image (i.e., an
image with k digit classes was classified correctly if the k
strongest responses of the readout layer matched these k
classes). The bottom-up network (b) performed worst with
about 40% while the subtractive feedback network (sub) per-
formed best with about 80% (see Figure 3).

Among the architectures compared in Spoerer et al. (2017),
we observed the same ordering of performance with b out-
performed by bf (Wilcoxon signed-rank test, Z = 2.87, p <
0.005), which is outperformed by bk (Z = 3.78, p < 0.001),
which in turn is outperformed by add (Z = 3.78, p < 0.001).2

Thus, we replicated part of the findings of Spoerer et al. (2017)
on a different dataset. However, the additional baseline slim,
which controlled for network depth and receptive field size,
did not perform significantly worse than the additive recurrent
network (Z = 0.15, p = 0.880). It therefore seems that the im-
proved performance of feedback networks reported in Spoerer

w f b, convolution ∗, element-wise multiplication�, ReLU nonlinearity
r, sigmoid nonlinearity σ and thresholding []ε.

2All p-values were adjusted to control the false-discovery rate.

0.10

0.15

0.20

0.25

0.30

b bf bk slim add gate mod sub div
Network

A
U

C

Feedback
no
yes

Figure 4: Robustness against white noise.

et al. (2017) is largely due to the increased depth from tempo-
ral unrolling and the resulting larger effective receptive fields.

As slim performed best among the feedforward architec-
tures, we used it as baseline to compare against the feedback
networks. The architectures mod and sub performed better
than baseline (Z = 2.69, p < 0.001 and Z = 3.78, p < 0.001,
respectively), whereas gate and div performed significantly
worse (Z = 3.78, p < 0.001 and Z = 3.78, p < 0.001, respec-
tively).

In addition to performance, we also investigated the net-
works’ robustness to noise. We did this by adding varying
levels of white noise (variance σ ∈ [0.0,1.0] in steps of 0.1)
or salt-and-pepper noise (probability p of corrupting a pixel
p ∈ [0.0,1.0] in steps of 0.1). We tested each network for
each noise level and normalized results (normalized accuracy
accnorm(p) = (acc(p)− acc(0))/(acc(1)− acc(0))) and cal-
culated the area under the curve (AOC) as an indicator for
robustness. A smaller AUC indicates that performance de-
graded more rapidly with increasing noise.

The bottom-up architecture with increased kernel size (bk)
and the network with gating feedback (gate) were most ro-
bust against noise (see Figures 4 and 5). The difference
in performance between these networks was not significant
(Z = 0.605, p = 0.545 for white noise, Z = 0.756, p = 0.450
in salt-and-pepper noise). The good robustness of bk is likely
due to the fact that larger kernels have a stronger smoothing
effect, averaging out part of the noise.

Among the networks with 3-by-3 kernels, the feedback ar-
chitectures were generally more robust than the feedforward
baselines. All feedback networks were more robust than the
best baseline (slim) on white noise and gate, mod and sub
were also more robust on salt-and-pepper noise (see Table 3).

Thus, feedback seems to increase the robustness of convo-
lutional networks against noise, especially if it is gating, mod-
ulating or subtractive. Similarly, larger kernels also increase
robustness.
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Figure 5: Robustness against salt-and-pepper noise.

Table 3: Differences in robustness between feedback net-
works and slim.

white noise salt-and-pepper noise
add Z = 3.18, p < 0.003 Z = 1.134, p = 0.285
gate Z = 3.704, p < 0.001 Z = 3.780, p < 0.001
mod Z = 3.629, p < 0.001 Z = 3.780, p < 0.001
sub Z = 3.704, p < 0.001 Z = 3.780, p < 0.001
div Z = 2.721, p < 0.008 Z = 1.361, p = 0.217

Conclusion

We show that feedback improves the performance of convo-
lutional networks as well as their robustness to noise on mul-
tiMNIST. For additive feedback, the performance advantage
vanishes when controlling for the depth of the unrolled net-
work and accordingly for the effective receptive field size. This
suggests that the ability of feedback networks to integrate in-
formation from a larger context over time is an important fac-
tor in their performance. It also shows that carefully designed
control architectures are crucial to assess whether feedback
does in fact improve performance.

We compared different schemes for integrating feedback
and feedforward signals and showed that the choice of feed-
back scheme can have significant impacts on performance
and robustness. In this study, modulating feedback inspired by
biased competition and subtractive feedback inspired by pre-
dictive coding offered the best performance and robustness.
These results can guide future investigations into neural net-
works with feedback.

We designed the architectures to make them as compara-
ble to each other as possible. For example, the subtractive
and divisive networks included local response normalization
(just like all others), even though this may be seen as a depar-
ture from the underlying principle of predictive coding. Testing
such variants, as well as more elaborate variants of the other
feedback schemes, goes beyond the scope of this paper and
is left for future work.

In addition, the comparison of feedback architectures (both
in performance and robustness) was exploratory, as we did
not have initial hypotheses as to which architectures would
perform best. Accordingly, the results presented here should
be interpreted with care: while we conclude that the type of
feedback plays an important role, further work is necessary,
for example, replication of these results on more datasets.
Furthermore, analysing the representations and computations
in different feedback networks may help to understand why
some forms of feedback perform better than others.

Incorporating feedback in deep networks and understand-
ing how to best combine forward and feedback signals
promises to help build better and more robust deep networks.
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