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Abstract
Responses of sensory neurons to repeated presentations
of identical stimuli are variable. Despite extensive stud-
ies on the structure and mechanisms of this variability,
its functional role remains debated. Here we propose and
test a functional account of both response selectivity and
variability, based on two recent hypotheses about neural
coding: first, that probabilistic inference about localized
visual features explains how primary visual cortex (V1)
neurons integrate information inside and outside their
receptive fields (RFs). Second, that the inferred prob-
ability distribution is reflected in the across-trial distri-
bution of neuronal responses (termed sampling hypoth-
esis), and therefore higher uncertainty in the inference
implies higher variability. The resulting model predicts
that stimuli surrounding the RF should reduce response
variability, reflecting that surround information reduces
uncertainty about stimuli inside the RF. We test the pre-
dictions on macaque V1 responses to compound grat-
ings and natural images. We find that variability is gener-
ally suppressed by stimuli extending beyond the RF; that
the suppression is weaker for uninformative surrounds
(ie. with mismatched orientation); and that the modula-
tion of variability and average firing rate can be dissoci-
ated. Our results offer strong evidence for a functional
role of cortical variability in probabilistic inference.
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Introduction
Cortical response variability has been studied extensively, be-
cause it can limit the information encoded by neuronal popu-
lations and therefore reduce behavioral accuracy (Zohary et
al., 1994; Averbeck et al., 2006). However, it has also been
proposed that variability could play functional roles (Stein et
al., 2005), in particular in the representation of probabilities.
Theory suggests that perception can be modeled as proba-
bilistic inference (Knill & Pouget, 2004), and that these infer-
ences rely on internal models adapted to the statistics of the
natural environment (Barlow et al., 1961; Berkes et al., 2011).
Understanding how neurons maintain internal representations
of probability distributions is therefore key to understanding
sensory processing, and for these reason different schemes
have been proposed (Pouget et al., 2013). A recent influential
proposal, termed the sampling hypothesis, is that the instan-
taneous neuronal activity represents samples from the target
probability distribution (Hoyer & Hyvärinen, 2003; Fiser et al.,
2010). Therefore, in this framework, response variability may

be indicative of the uncertainty associated to the variables rep-
resented by the firing activity.

Here we combine modeling and electrophysiology in
macaques to test this functional hypothesis in primary visual
cortex (V1), with a focus on how it is modulated by contextual
stimuli. We focus on spatial context, i.e. stimuli in the sur-
round of the neurons receptive field (RF), because it is known
to strongly modulate firing rate (Cavanaugh et al., 2002), it
has been linked to image statistics and probabilistic inference
(Schwartz & Simoncelli, 2001; Coen-Cagli et al., 2012), and
it has recently been shown to affect variability (Snyder et al.,
2014). Importantly, spatial context provides additional infor-
mation that could reduce uncertainty about the stimulus in-
side the RF, without modifying the RF stimulus itself. We
relate neuronal responses to probabilistic inference in Gaus-
sian scale mixture (GSMs) models. GSM models capture well
the statistics of natural images (Wainwright et al., 2001) and
successfully predict V1 responses including how spatial con-
textual stimuli modulate firing rate (Coen-Cagli et al., 2015),
and how variability is affected by stimulus onset and contrast
(Orbán et al., 2016). We use a simple formulation of the GSM
model with spatially separate input regions representing the
RF of a neuron and its surround, where the features encoded
by the neuron – oriented edges – are subject to additive ob-
servation noise, and to the global influence of a single scalar
multiplicator, the mixer (representing e.g. the image contrast
level). We assume that the goal of the neuron is, given a visual
input, to invert the generative model and represent the poste-
rior distribution of the feature inside the RF, while marginal-
izing out the nuisance variables (i.e. the mixer and the ob-
servation noise). Those unknowns therefore are a source of
uncertainty that depends on the stimulus, and are reflected
in the width of the probability distribution. Following the sam-
pling hypothesis, we then assume that neuronal responses
are samples from this posterior distribution.

We show that in this framework, model neurons exhibit
supra-Poisson variability consistent with existing data (Goris
et al., 2014). The model predicts that surround stimulation
should reduce response variability beyond the known reduc-
tion in firing rate, reflecting that spatial context information
reduces uncertainty, and that this effect on variability should
be stronger when surround stimuli are more informative. We
tested these predictions with recordings from V1 of anes-
thetized and awake fixating macaques, viewing compound
gratings and natural images. Our results offer strong support
for these predictions, providing new evidence for the theory
that cortical variability has a precise functional role in proba-
bilistic inference.
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Methods

Generative model

To generate predictions about contextual modulation of re-
sponse variability, we extended a Gaussian Scale Mixture
(GSM) model. This model and related extensions capture
well the spatial statistics of natural images (Wainwright et al.,
2001) and predict the average firing rate of V1 neurons to
compound gratings (Schwartz & Simoncelli, 2001) and natural
images (Coen-Cagli et al., 2015).

We denote the observable quantity as the vector x ∈ Rn,
which in our case corresponds to the output of a bank of n
linear, Gabor-like filters (Simoncelli & Freeman, 1995) applied
to an image patch. The filters are arranged into a center and
a surround region (Fig. 1). Every position and orientation has
two filters with complementary phases (in a quadrature pair),
for convenience we denote the center vertical filters as x+c and
x−c . We now consider a generative process of the form:

x = ν g+η , with (1)

ν∼ Rayleigh(1) ; g∼N (0,Σg) ; η∼N (0,Σnoise) (2)

Here the vector g ∈Rn represents the image features, i.e. ori-
ented edges corresponding to the filter position and orienta-
tion. The variable ν ∈ R+ is instead the mixer, a positive
global multiplier, that can be intended as a global contrast
level. η ∈ Rn is an additional source of noise.

The task of the model neuron is to invert the generative
process described above: given a visual stimulus and a cor-
responding observation x , infer the latent image features in-
side the receptive field, denoted as g+c and g−c . This requires
the computation of the posterior distribution over two factors
of uncertainty: the mixer values and the observation noise.
We then model the phase-invariant neuronal response at each
trial as:

r = r0 +α

√(
g+c
)2

+
(
g−c
)2

, for g∼ P(g|x) (3)

where P(g|x) is the posterior probability of the features of in-
terest, obtained by inference over the generative model. The
parameters r0 and α are not part of the GSM, and could be
used for quantitative fits at the single-neuron level. Here, for
a qualitative comparison, we set them heuristically to achieve
realistic Fano factors.

This results in a direct dependency between the trial-to-trial
variability of the spike responses and the shape of the poste-
rior belief P(g|x). We derived analytical expressions for this
relationships in a reduced model (not shown) with no observa-
tion noise (i.e. η = 0 in Eq.1). In the model contextual stimuli
(that is, the surround elements of x) have a divisive scaling ef-
fect on both mean and variance of the inferred g. This analytic
result therefore predicts a precise link between divisive nor-
malization (Carandini & Heeger, 2012) and contextual modu-
lation of response variability, as has been recently suggested
(Verhoef & Maunsell, 2017; Coen-Cagli & Solomon, 2018).

filters positions
and orientations

center
region

surround
region

example of filters train on natural images

· · ·

test on gratings

· · ·

Figure 1: Model implementation

Model fitting and implementation

The Σg is computed by moment-matching, based on an empir-
ical estimate of the covariance of x, computed applying the fil-
ter bank to a large sample of natural image patches (N ≈ 104).
The observation noise Σnoise is found by applying white noise
to the filters, and extracting the resulting correlation structure.
The global scaling of the noise is chosen heuristically.

To test the model, we apply the same filter bank to patches
of interest (gratings equivalent to those used experimentally),
and sample from the posterior distribution P(g|x) numerically
by a Hamiltonian Monte Carlo procedure (Stan Development
Team, 2018). We compute spike-counts using Eq. 3.

Electrophysiology

Data were collected with microelectrode arrays implanted in
V1 of anesthetized and awake macaques. In the anesthetized
experiments, stimuli were static natural images and gratings of
varying size, phase, and orientation (details below) presented
for 100 msec followed by 200 msec blank screen, 20 times
in pseudo-random order (see Coen-Cagli et al., 2015, for de-
tails). In the awake experiments animals performed a fixation
task and stimuli were similar, except they were presented for
200 msec with a blank of 150 or 100 msec, and repeated 60
to 120 times.

We analyzed only neurons whose RFs were well-centered
on the images, and for each neuron only stimuli that evoked
robust responses above spontaneous activity.

Results
A general prediction of this framework is that the presence
of contextual information should reduce response variability,
as a consequence of the expected reduction of uncertainty
about the features within the receptive field (RF). We therefore
compared the Fano factors (FF) of V1 neurons in the presence
of a large image (size � RF) or a small image (size ≈ RF).
The results consistently show that variability is reduced when
a surround stimulus is present, for gratings (Fig. 2 a) and for
natural image patches (Fig. 2 b).

This effect could reflect a generalized network mechanism,
whereby providing a stronger input (i.e. a larger stimulus) to
the population induces a more deterministic dynamical regime
(Rajan et al., 2010). However our model also predicts that
contextual stimuli have a stronger impact on variability when
they are more informative about the stimulus inside the RF.
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Figure 2: Fano factors (FF) measured in macaque V1. Or-
dinate: FF for a stimulus matched to the average RF size (1
deg), abscissa: larger stimulus (6.7 deg) that covers the RF
and its surround. (a) Static gratings, average across neurons
in each recording sessions; error bars: 68% c.i. ; (b) natural
images, points represent single neurons.

Specifically, the model predicts that both mean response and
FF decrease when center and surround are parallel, but less
so when they have different orientations (Fig. 3 a).

We therefore presented compound gratings to both awake
and anesthetized monkeys. The center region was kept fixed
at the neuron’s preferred orientation, whereas the surround
had a fixed size and contrast, but varying orientations. Consis-
tent with the prediction, we found that the suppression of av-
erage response and FF were similarly tuned for the surround
orientation (Fig. 4 a).
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Figure 3: neuronal responses predicted by the GSM model.
Left abscissa (green): trial-averaged normalized spike count;
right abscissa (blue): Fano factor. Stimuli: (a) compound grat-
ings, fixed center orientation (preferred angle) and surround
of varying orientation; (b) circular patches of oriented grat-
ings at preferred orientation of varying size. Shaded areas:
68% c.i. obtained from different noise realizations on the vi-
sual stimuli.

To exclude the possibility that the reduction in FF was
simply a byproduct of the reduction in mean response, we
performed a mean-matching analysis. We grouped neurons
across conditions by mean response, using bins correspond-
ing to 0.33 spike counts. We then consider mean-matched
pairs, where one of the neuron is in the parallel surround con-
dition, and the other in the orthogonal surround condition. We

then compute a Fano factor reduction score as

score =
FF⊥−FF‖

1/2 (FF⊥+FF‖)
(4)

Despite having very similar spike counts, the matched pairs
show a consistently higher FF in the orthogonal condition
compared to the parallel one (Fig. 4 b).
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Figure 4: awake V1 responses to compound gratings with
center and surround of varying orientation (see cartoons in
Fig. 3 a). (a) Left abscissa (green): average spike counts, nor-
malized to the response to RF-sized stimulus; right abscissa
(blue): FF. Thick lines: average across neurons; shaded ar-
eas: 68% c.i. ; (b) FF reduction score computed as in Eq. 4
for mean-matched neuron pairs.

To further de-couple mean response modulation from ef-
fects on variability, we performed a second series of ex-
periments. We considered circular patches of gratings
and natural images, of varying size. We expect that, as
size increases, the average response would change non-
monotonically (Cavanaugh et al., 2002). However the GSM
model makes a strong distinction between low firing due to a
weak stimulus or due to surround suppression. In the former
case the response is small due to a small input (the x in Eq. 1),
and there is still high uncertainty in the model latent variables.
In the latter case, the reduction is due to a higher estimate of
the global mixer (ν in Eq. 1 has a divisive effect on g), and
there is more overall information about the hidden variables
and the nature of the stimulus. The net result is that vari-
ability decreases monotonically with stimulus size (Fig. 3 b).
We tested this model prediction in V1 of both anesthetized
and awake macaque monkeys, finding a good qualitative cor-
respondence between data and model (compare Fig. 3 b to
Fig. 5).

Discussion
In this work, we combined computational modeling and exper-
imental electrophysiology to investigate the functional role of
response variability in visual coding. We extended the norma-
tive model of Coen-Cagli et al. (2012), including explicit pre-
dictions on contextual modulation of variability, based on the
hypothesis of neural sampling (Orbán et al., 2016).

Our results indicate that models of neural coding based on
the GSM statistics can explain the nonlinear effects of con-
textual modulation not only on average neuronal responses
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Figure 5: V1 responses in awake and anesthetized monkey
to circular patches of varying size. The patch is either an ori-
ented grating, at best orientation (as represented in Fig. 3 b),
or a natural image. Spike counts of each neuron are nor-
malized by their peak response. Same conventions as in
Fig. 4 a. (a,d) Anesthetized, gratings; (b,e) awake, gratings;
(c,f) awake, natural images.

(Coen-Cagli et al., 2015), but also on modulation of variability.
Our data supports the model prediction that surround modu-
lation of variability is stronger for more informative stimuli, and
can be dissociated from the modulation of average responses.
Furthermore, we observed similar effects across natural im-
ages; future work will address image-specific model predic-
tions.

This work offers new evidence for a functional role of cor-
tical variability in probabilistic inference, and underlines the
importance of unified models of neural coding that account for
both mean response and variability.
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