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Abstract: 

Electrophysiological signals of cortical population 
activity contain oscillatory and fractal (1/frequency) 
components. However, the relationship between 
these components is unclear. To address this, we 
investigated human resting-state MEG recordings. 
We applied combined source-analysis, signal 
orthogonalization and irregular-resampling auto-
spectral analysis (IRASA) to separate oscillatory and 
fractal components of the MEG signals at the cortical 
source-level. We then compared the spatial 
correlation structure of fractal and oscillatory 
components across the human cortex. We found that 
these correlation structures differed, which suggests 
different mechanisms underlying fractal and 
oscillatory population signal components. 
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Introduction  

Neuronal population activity, as measured with 
EEG, MEG or LFPs, can be separated into 
oscillatory and the fractal components. While 
oscillations have been implicated in various 
functions (Buzsáki & Draguhn, 2004), it is not until 
recently that the broadband, or 1/frequency, part of 
the spectrum became itself a focus of study (He, 
2014). Broadband activity has been related to 
neural noise (Voytek, Kramer, Case, Lepage, 
Tempesta, Knight & Gazzaley, 2015), self-
organized criticality, long range temporal 
correlations, and excitation-inhibition balance. 
However, it remains unclear how oscillatory and 
fractal signal components are related.  

To address this, we systematically compared the 
functional connectivity, i.e. spatial correlation 
structure, of fractal and oscillatory components of 
human cortical population activity using resting-
state MEG recordings. 

Methods  

We analyzed data from 112 healthy subjects 
recorded either at the MEG Center, Tuebingen or 
as part of the Human Connectome Project (HCP).  

We adapted the minimally preprocessed pipeline of 
the HCP (Larson-Prior, Oostenveld, Della Penna, 
Michalareas, Prior, Babajani-Feremi, … Snyder, 
2013) and the same artifact rejection to both data 
sets.  

Clean data was high-pass filtered at 0.1 Hz using a 
4th order Butterworth filter. We removed line noise 
artifacts and resampled the data to 1000 Hz.  

We used linearly constrained minimum variance 
(LCMV) beamforming (Van Veen, van Drongelen, 
Yuchtman & Suzuki, 1997) to project the sensor-
level MEG data into source space using a single-
shell head-model leadfield (Nolte, 2003) based on 
each individual subject’s MRI.  

We analyzed the source-level data in non-
overlapping 3 s sliding windows. For each time-
window and source-location, we applied time-
domain orthogonalization to discount volume 
conduction effects (Hipp, Hawellek, Corbetta, 
Siegel & Engel, 2012). We then performed irregular-
resampling auto-spectral analysis (IRASA) (Wen & 
Liu, 2016) on the orthogonalized signal to split the 
signal into oscillatory and fractal components. 

For each time-window and source-location, we 
fitted a power law to the fractal spectrum. We 
compared a simple linear model, a continuous 
linear model with a knee at 15 Hz, and a model that 
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takes into account the effect of the ambient noise. 
We assessed model fits using the Akaike 
information criterion (AIC). 

To assess functional connectivity, we took the 
logarithm of oscillatory and fractal power spectra 
and binned them into logarithmically spaced bins. 
(Hipp, Hawellek, Corbetta, Siegel & Engel, 2012). 
Then, we computed the Pearson correlation 
between each pair of orthogonalized seeds.  

To compare the correlation structures of fractal and 
oscillatory components, we performed a correlation 
with attenuation correction (Siems, Pape, Hipp, & 
Siegel, 2016). Attenuation correction takes into 
account each signal’s reliability (SNR) and 
computes correlations corrected for finite SNR. 

Results 

We source-reconstructed cortical activity from the 
MEG, discounted volume conduction by means of 
signal orthogonalization and separated fractal and 
oscillatory components using IRASA. We fitted and 
compared different signal models of the fractal 
power spectra. From the tested models, the optimal 
model (minimum AIC) included a knee at 15 Hz and 
included the (non-flat) shape of the power spectrum 
during empty-room MEG measurements (Bedard, 
Gomes, Bal & Destexhe, 2017; Dehghani, Bédard, 
Cash, Halgren, & Destexhe, 2010).  

We then computed the attenuation corrected 
correlation between the brain-wide correlation 
patterns of oscillatory and fractal signal 
components (Figure 1). Across the entire 

investigated frequency range, attenuation corrected 
correlations were substantially larger than 0 but 
significantly smaller than 1. Thus, the functional 
connectivity patterns of oscillatory and fractal 
components were distinct. At 5.5 Hz the difference 
between connectivity patterns was most 
pronounced. For frequencies around 10 Hz and 64 
Hz connectivity patterns were most similar.  

Conclusions 

Our results show that fractal and oscillatory signal 
components provide different information about the 
temporal correlation, i.e. functional connectivity, of 
different cortical regions. This raises the question, 
which processes may be reflected by the functional 
connectivity of fractal signal components?  

Broadband activity is correlated with neuronal firing 
rates in intracortical recordings. Thus, the 
connectivity patterns of fractal activity measured 
with MEG may provide a window into the spatial 
structure of co-fluctuations of broadband or spiking 
activity. 

Independent of the specific underlying 
mechanisms, the observed differences in 
connectivity patterns of oscillatory and fractal 
activity indicate that oscillatory and fractal signals 
components are, at least partially, independent. 
This suggests different neuronal mechanisms 
underlying fractal and oscillatory components of 
human cortical population signals. 

 

Figure 1: Attenuation corrected correlation between cortex-wide correlation patterns of fractal and oscillatory 
neuronal activity: a) Attenuation corrected and non-corrected correlation between correlation patterns of 
fractal and oscillatory activity , b) inter-subject reliabilities of correlation patterns of fractal and oscillatory 

activity, c), proportion of reliable patterns. Shaded regions in a) and b) indicate 5-95% and 25-75% 
percentiles across the cortex. 
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